2015 Annual Report

CLEAN SEEDCANE

PARLIAMENT OF FIJI PARLIAMENTARY PAPER NO. 52 OF 2018

FOREWORD

The weather conditions in 2015 was similar to previous year with lower than average rainfall received in the cane belt that contributed to below expected cane production. The government has been providing continual support to the industry to improve productivity and the use of science and technology at the farm level could be the two most important parameters to mitigate declining cane and sugar yields. The Institute continues to focus on its key strategic areas of cane improvement, crop protection and management through various research projects. Supplementing these projects is the technology transfer drive that is considered as an integral part of crop production.

The Institute aspires to provide the industry with high performing varieties that are well adapted to the conditions in Fiji. Breeding of sugarcane varieties is a complex lengthy process involving many intricate and difficult procedures that is spread over a 12-15 year cycle. Each step and different stage of the breeding program plays an important role and, during the year a number of varieties from various stages of selection were progressed to the next stage of selection. The release of varieties for commercial planting is based mainly on high sugar yield per unit area, longer ratoon ability and resistance to diseases. Sugarcane seeds (fuzz) from 13 crosses was imported from West Indies and this will be evaluated to identify breeding material that will help in broadening the genetic base for the future breeding.

The protection of the industry against diseases and pest incursions is a high priority task for the Institute and warrants a proactive approach. The Institute has so far managed to keep the industry reasonably free of most of the major pests and diseases that are in Fiji. However, to continue to enjoy the same protection will require advances in biotechnology and manpower resources for which financial support is necessary. Routine screening of Fiji leaf gall (FLG) disease continued during the year and some preliminary survey works was done on plant parasitic nematodes where soil samples were analysed from Penang mill area to determine the occurrence of the nematodes. A survey was also carried out to ascertain the presence of cane grubs in the cane belt and initial findings indicate the presence of this emerging pest in the cane farms that has been sent abroad for identification. The rouging unit inspected 4587 hectares and eradicated 482 diseased FLG stools. The Institute needs to remain focused to become a centre of excellence and disseminate information through the technology transfer program. Under this program on field demonstrations on key issues that will improve production are conducted. In 2015 18 grower demonstration trials were visited by 670 growers who had the opportunity to see the advancements in mechanization.

The EU support for the research activities is available through the Accompanying Measures for the Sugar Protocol Programme (AMSP Programme). The Sugar Research Institute of Fiji has benefitted significantly from the support of European Union through the Annual Action Programs (AAP) 2011-2013. The total of \in 3.5M has been made available to SRIF through the Annual Action Programs AAP2011, AAP2012 and AAP2013.

This year I would like to put on record thanks and appreciation to staff from all categories in our substations and the head office for their support and commitment to the Institute.

The SRIF staff work collectively by providing technical guidance to protect and advance the sugar industry on issues affecting its ability to be sustainable and profitable. I would also like to thank the new Chairman and other board members for their useful contribution and guidance.

Chief Executive Officer

MISSION STATEMENT

To advance the industry by excellence in technology transfer emanating from research results through science that supports innovative activities in sugar related industries and to make the Fiji Sugar Industry productive and sustainable.

Board Members

Prof. Rajesh Chandra	-	Chairman
Dr. Shanmugha Sundram	-	Member
Prof. Paras Nath	-	Member
Mr. Daniel Elisha	-	Member
Mr. Abdul Khan	-	Member
Mr. Sundresh Chetty	-	Member
Mr. Manasa Tagicakibau	-	Member
Mr. Sanjay Prakash	-	Member

Science Audit Committee Members

Dr. Shanmugha Sundram	-	Chairman
Prof. Paras Nath	-	Member
Mr. Abdul Khan	-	Member
Mr. Sundresh Chetty	-	Member
Mr. Sanjay Prakash	-	Member

PARLIAMENT OF FIJI PARLIAMENTARY PAPER NO. 52 OF 2018

TABLE OF CONTENTS

FOREWORD	2
MISSION STATEMENT	3
PLANT BREEDING	6
Germplasm	6
Drasa Collection – in Drasa Estate	6
Dobuilevu Collection – at SRIF crossing facility	6
Overseas varieties	6
Sugarcane crossing	7
Stage 1	7
LF2014 series	8
LF2015 series	8
Stage 2	9
LF2014 series	9
LF2013 series	9
Stage 3	9
LF2012 series	10
LF2013 series	11
Stage 4	11
LF2011 series	11
LF2010 series	11
LF2009 series	11
LF2008 series	11
Recommendations	11
AGRONOMY	13
ANALYTICAL LABORATORY SERVICES	29
METEOROLOGY	37
CROP PROTECTION	45
CROP PRODUCTION	54
EUROPEAN UNION SUPPORT TO THE SUGAR RESEARCH INSTITUTE OF FIJI	63
FACP APPENDICES	70
APPROVED VARIETIES	80
ABBREVIATIONS	83
GLOSSARY	84

PLANT BREEDING

PLANT BREEDING

Plant Breeding consisted of 6 projects that were under study in 2015 namely:

- Germplasm,
- Sugarcane Crossing,
- Stage 1,
- Stage 2,
- Stage 3 and
- Stage 4.

Germplasm

The sugarcane germplasm is a collection of clones that has recorded desirable traits and will be utilized for further genetic combinations. One of the key characteristics of the germplasm is to be genetically diverse through the inclusion of clones with diverse genetic background. This can be accomplished by importing varieties as well as sourcing varieties from the selection phase and parental development phase of the current breeding programs.

Sugar Research Institute of Fiji (SRIF) has got its germplasm located at Drasa in Lautoka, at Wairuku in Penang and at Dobuilevu in the Ra Province. The Drasa collection is undergoing verification and re-planting while Wairuku and Dobuilevu collections are being maintained through timely harvest and cultivation. Portions of the Dobuilevu collection is still in a farmer's field which is being shifted to the new crossing site. Along with the germplasm currently being maintained, SRIF has consistently been importing varieties to expand its current collection as well as inducing diversification. In 2012, 9 varieties from Vietnam and 8 varieties from BSES were imported, the details of which will be discussed under respective headings below. The varieties imported in 2010-2011 have already been incorporated in the breeding plots (flowering beds). Overall, the SRIF germplasm is being maintained well with consistent assessments being carried out.

Drasa Collection -- in Drasa Estate

Core collection in Field 11 which was planted in the 1990's (exact date unknown) was abandoned and attention was placed on the restored clones that was planted in Field 24 in 2011. It has a mix of local and overseas hybrids as well as pure species of noble and wild canes. Routine maintenance of the collection and upkeep was carried out this year.

Dobuilevu Collection - at SRIF crossing facility

Dobuilevu collection consists of clones for immediate use in sugarcane crossing. This is reviewed every year as to prevent use of same set of genetic materials over and over again. Clones from the Drasa germplasm, Plant breeding Selection trials are considered for inclusion as well as the overseas varieties and clones from the parental line development crosses such as Erianthus crosses. The collections were shifted into nearby Farmer's field to accommodate planned landscaping of the SRIF farms. No new varieties were planted this year.

Overseas varieties

The inclusion of the overseas varieties promotes diversity to the present collection as new genetic materials are being added into the existing gene pool. Historically, this had been a normal practice and this has been pursued again after a lapse of 2 decades during which no such initiatives were undertaken. In 2015, 13 crosses from West Indies were imported and

sown in Rarawai whereas a MoU was signed with Visacane Quarantine facility at CIRAD in France to import new sugarcane varieties for the next 3 years.

Sugarcane crossing

Sugarcane crossing is carried out every year to bring in the genetic diversity into the selection systems. The flowers from various sugarcane clones are classed as male and female which then are inter-crossed based on sugar, fibre and parentage. The products of these genetic combinations are then taken through rigorous selection methods to achieve near commercial clones which are then taken for release or reverted back to germplasm for use as parent material.

Table 1: Summary of all crosses for 2015							
		ТҮРЕ		# CROSSES	%		
AL		POLY	FIELD	136	2004		
COMMERCIAL	COMMERCIAL	POLT	HAND POLLINATED - FIELD	61	29%		
MME	HYBRIDS	BI-PARENTAL	LANTERN	258	600/		
0		BI-PARENTAL	HAND POLLINATED - LANTERN	143	60%		
			HAND POLLINATED - LANTERN	24			
Ļ	ERIANTHUS	BI-PARENTAL	FIELD	8	6%		
ENT/			HAND POLLINATED - FIELD	10			
EXPERIMENTAL			LANTERN	10			
(PEF	OFFICINARUM	BI-PARENTAL	HAND POLLINATED - LANTERN	3	2%		
Û			FIELD	3			
	IJ/IK HYBRIDS	POLY	FIELD	16	2%		
ΤΟΤΑ	L			672			

The following table summarizes the total crosses carried out in 2015.

Poor seed sett from crosses was addressed by the consultant Dr. Nils Berding and it was found that the crossing solution did not have the right mix to sustain flowered stalks for 21 days. Steps are being undertaken to correct this for the 2016 season.

Stage 1

Stage 1 is the progeny testing stage whereby the seedlings established from current and past year crosses are established for new trial and the seedlings that had been transplanted in the field in the previous year are evaluated. The assessment is based on sucrose (brix) of the clones with the ones having brix higher than the average of standards (commercial varieties) are selected for stage 2. In some cases, clones with good vigour/ appeal are also considered although they may have less brix. Both the LF2014 and LF2015 series were in Stage 1 this year.

LF2014 series

The cane stalks were still in semi internode stage due to late planting in March. There are high chances this trial may not be evaluated in 2016 as prevailing dry weather conditions post transplanting also contributed to the slow growth of the varieties.

LF2015 series

A total of 1076 fuzz packets was sown in 2015, details of which are shown in the table below. All the seedlings were potted and transplanted to the field in December.

Table 2	: LF2015 se	eries fuz	z sowing	g summa	ry				
		Comm	ercial Cr	osses	Ex	perimenta	al Crosse		
Year	*Details	Poly	Bi-parental	Unknown	Robustum	Erianthus	IJ/IK hybrids	Officinarum	Total
	Sown	1	49	-	-	-	-	-	50
2004	Germ	0	5	-	-	-	-	-	5
	%	-	10%	-	-	-	-	-	10%
	Sown	-	113	4	-	-	-	-	117
2005	Germ	-	5	-	-	-	-	-	5
	%	-	4%	-	-	-	-	-	4%
	Sown	-	242	-	-	-	-	-	242
2006	Germ	-	48	-	-	-	-	-	48
	%	-	20%	-	-	-	-	-	20%
	Sown	-	23	-	-	-	-	-	23
2007	Germ	-	-	-	-	-	-	-	0
	%	-	-	-	-	-	-	-	0%
	Sown	-	-	-	-	23	-	-	23
2008	Germ	-	-	-	-	1	-	-	1
	%	-	-	-	-	4%	-	-	4%
	Sown	30	44	-	-	-	-	-	74
2009	Germ	9	22	-	-	-	-	-	31
	%	30%	50%	-	-	-	-	-	42%
	Sown	186	11	-	22	4	99	4	326
2010	Germ	111	5	-	11	3	78	3	211
	%	60%	45%	-	50%	75%	79%	75%	65%
	Sown	78	16	-	-	-	-	-	94
2011	Germ	76	10	-	-	-	-	-	86
	%	97%	6%	-	-	-	-	-	91%
	Sown	16	37	-	-	-	1	-	54
2012	Germ	4	22	-	-	-	-	-	26
	%	25%	59%	-	-	-	-	-	48%

Table 2:	Cont'd								
	-	Comm	nercial Cro	osses	Exp	periment	al Crosses		
Year	*Details	Poly	Bi-parental	Unknown	Robustum	Erianthus	1J/IK hybrids	Officinarum	Total
	Sown	9	33	-	-	2	9	-	53
2013	Germ	-	2	-	-	-	1	-	3
	%	-	6%		-	-	11%	-	6%
	Sown	2	17	-	-	1	-	-	20
2014	Germ	-	-	-	-	-	-	-	0
	%	-	-	-	-	-	-	-	0%
	Sown	2	17	-	-	1	-	-	20
WEST INDIES	Germ	-	-	-	-	-	-	-	0
INDIES	%	-	-	-	-	-	-	-	0%
	Sown	322	585	4	22	30	109	4	1076
	Germ	200	119	0	11	4	79	3	416
	%	62%	20%	0%	50%	13%	72%	75%	39%
Totals	4	All Comr	nercials		1	All Exper	imental		
	Sown		911			16	5		1076
	Germ		319			97	,		416
	%		35%			59 9	%		39%

*Sown – Number of fuzz packets sown, Germ – Number germinated, % - Percent germination

Stage 2

Stage 2 is the first clonal stage whereby the selections from the seedling stage are planted and evaluated. Stalk samples are taken from the trial and sent for small mill laboratory analysis. The field notes on variety are also taken into consideration before making the final set of selections for advancement to Stage 3. In 2015, the LF2014 and LF2013 series were in Stage 2.

LF2014 series

This series could not be planted due to delay in Stage 1 selection that could not be carried out due to late planting of seedlings in the same year followed by drought that led to poor establishment of stalks.

LF2013 series

A total of 565 clones were sampled and the field notes on all varieties were taken. Out of the 565 clones sampled, 71 varieties were selected for advancement to Stage 3.

Stage 3

Stage 3 is the second clonal stage whereby the clones from Stage 2 are planted and evaluated. Stalk samples are taken from the trial and sent for small mill laboratory analysis. The field notes on varieties are also taken into consideration before making the final set of selected clones to progress to Stage 4. The clones are also sent for disease resistance screening at this stage. In 2015 the LF2012 and LF2013 series were in Stage 3.

LF2012 series

A total of 80 clones were sampled and field assessment completed. The final selection was conducted and a total of 17 clones were selected for advancement to Stage 4.

Table 3: L	F2012 Stage	e 3 – Selecti	on for	stage	4 c	lone	es						
Variety	Female	Male	%Fibre	%Pocs	Stand	Lodged	Trash	Flower	SS	Growth	Height	Stalk	Appeal
LF12-276	LF00-584	POLY 11	9.3	18.4	А	S	S.C			М	М	T.M	С
LF12-63	LF02-721	POLY 61	10.9	17.2	А	S	S.C			G	Т	М	C+
LF12-2	LF05-746	POLY 89	9.6	16.6	А	-	F			S	М	TH	C+
LF12-22	LF02-887	POLY 60	12.8	16.4	А	S	S.C			М	Μ	T-M	С
LF12-40	LF05-1025	POLY 23	13.4	16.4	G	S	S.C	F	М	М	Μ	T-M	С
LF12-114	LF05-200	POLY 3	11.9	16.3	G	S	С	NO		G	M-T	М	С
LF12-34	LF03-163	POLY 20	12.5	16.3	Ρ	S	S.C			М	Μ	М	C+
LF12-31	LF00-584	POLY 2	10.8	16.1	А	S	F			OK	Μ	T-M	С
LF12-282	LF03-24	POLY 62	12.2	16.1	А	S	F		F	OK	Μ	TH	C+
LF12-255	LF03-24	POLY 29	14.0	16.1	А	S	S.C			М	M-T	M-TH	С
LF12-154	LF02-864	POLY 53	11.1	15.9	А	L	F		S	S	S-M	M-T/H	C-
LF12-112	LF00-1082	POLY 18	10.8	15.9	А	S	S.C	F		G	Μ	M-TH	C+
LF12-76	LF00-1082	POLY 9	11.2	15.7	А	S	F			OK	Μ	TH-M	C+
LF12-253	LF03-24	POLY 29	13.9	15.7	А	S	F	F		М	Т	M-TH	C+
LF12-74	LF05-302	POLY 23	14.2	13.4	А	S	F			М	M-T	M-TH	С
LF12-153	LF99-2430	POLY 142	10.8	14.2	А	S	S.C			М	Μ	M-TH	C+
LF12-233	NAIDIRI	POLY 139	11.9	14.5	А	S	F	F	F	G	Т	M-TH	C+
MANA			9.4	16.1									
NAIDIRI			11.1	15.9									

KEY:

Stand G/ A/ P – good/ average/ poor

Lodged S/L/H - slightly/ lodged/ heavy

Trash SC/C/F – slightly clinging/ clinging/ free trashing

Flower F/ P – flowered/ profuse

SS (SIDE SHOOTS) F/ M/ E - few/ moderate/ extreme

Growth S/ M/ V – stunted/ moderate/ vigorous

Height S/ M/ T – short/ moderate/ tall

Stalk T/ M/ TH – thin/ moderate/ thick.

Appeal A/C+/C/ C- - advance/ consider advance/ consider/ consider or discard.

A total of 12 varieties were selected on having %pocs better than the standards Naidiri and Mana whereas LF12-76, LF12-153 and LF12-233 selected based on having good physical attributes matching that of commercial cane and its sugar yield will be monitored in Stage 4. LF12-74 and LF12-253 have been selected for high fibre as well as good physical attributes.

The seed cane for selected clones were sent to Labasa for propagation however the seed bed could not be established for Penang, Lautoka and Rarawai Stage 4 since Stage 3 trial got

burnt together with the seed cane harvested for planting. The seed bed is re-scheduled to be planted in April 2016 whereas stage 4 planting will be delayed to October-November 2016.

LF2013 series

A total of 69 varieties was selected and planted for this trial on 29.10.15. All the cultivation work in this trial has been done and would be evaluated in 2016.

Stage 4

Stage 4 is the final stage whereby the selections from Stage 3 are planted at all mill areas (multi-location G X E trials) and evaluated for 3 crop cycles – Plant, 1st Ratoon and 2nd Ratoon. Stalk samples are taken from the trial and sent for small mill laboratory analysis. The field notes on varieties are also taken into consideration and varieties are identified (if having desired commercial attributes) in the first ratoon for Farmer Feel Effect (FFE) programme whereby seed cane of these varieties are propagated and given out to identified growers (at least 1 per sector) to plant for feedback purposes. In 2015, the LF2011, LF2010, LF2009 and LF2008 series were in Stage 4.

LF2011 series

A total of 10 varieties in 4 replicates were planted in all mills and will be evaluated in 2016.

LF2010 series

This trial was in Plant crop in Drasa, Rarawai and Labasa. The Drasa trial was abandoned later due to excessive gaps and lack of seed material for 'supply'. Labasa trial was also affected by drought but evaluation was done. Rarawai trials established well and were sampled, harvested and weighed. The trials will be maintained and proper husbandry practices carried out for evaluation in 2016.

LF2009 series

This trial was in 1st ration and also present in all mills and has been sampled, harvested and weighed. The data was compiled and recommendation for varieties for FFE will be done by 2016 after observing the propagation plots. The trials are maintained and proper husbandry practices carried out for evaluation in 2016.

LF2008 series

This trial was in 2nd ratoon and was present at all mills and has been harvested and weighed. The data was compiled for analysis and recommendation for varieties for FFE Program in 2016. This trial has officially been completed and will not be pursued in 2016.

Recommendations

The Plant Breeding program needs at least 4 full time staff to oversee all the projects. There was only 1 full time staff at the beginning and 2 more staff joining in August who were under study. At least 3-4 full-time support staff is also needed for all project field work. This is to upkeep consistency and proper monitoring and implementation of all the activities in a timely manner and to avoid repetition of training and mistakes

AGRONOMY

AGRONOMY

Summary

Organic fertilizer promotes rich, fertile soil and supplies the nutrients to the plants when needed by the plant. Cane yield obtained from Farmorganix (SumaGrow) trial conducted at Drasa, showed that by applying organic fertilizer (SumaGrow) in combination with commercial fertilizers can increase cane and sugar yield significantly. Organic fertilizer produced 90 - 97 tonnes per hectare when used alone. However, the effect is enhanced when used in combination with commercial fertilizer producing 121 tonnes per hectare of cane. The effects of organic fertilizer (SumaGrow) need to be studied on plant and ratoon stages of sugarcane on different soil types and different sugarcane varieties to be able to recommend organic fertilizer (SumaGrow) for sugarcane.

The potassium trial that was planted in 2012 was evaluated for second ratoon in 2015. The results of this study indicated that there was no adverse effect of Muriate of potash on pocs, cane yield and sugar yield for plant crop. The trial will be evaluated once more in the third ratoon stage. The variety trial was evaluated for second ratoon. The result of this study indicated that late harvesting had an impact on cane pocs. Early maturing variety such as Naidiri should be planted and harvested early in the harvesting season. The other three trials (Nitrogen, Lime & Legume) which were planted in 2013 season in Labasa were evaluated for the first ratoon crop in 2015. For the nitrogen trial, it was observed that 120kg N/ha gave an economical yield which is desired by the farmers. Therefore, it is recommended that farmers can apply nitrogen from 120kg N/ha but this is yet to be confirmed after analyzing the second ratoon data next season. The value is a general recommendation but farmers should adhere to lab recommendation where possible.

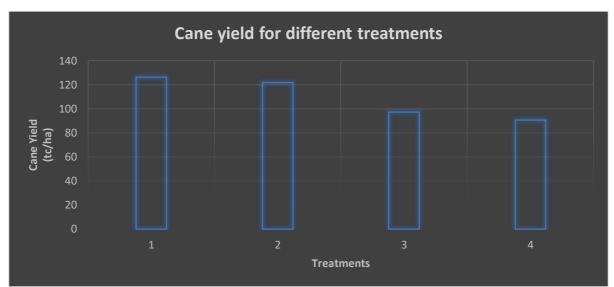
As for the Lime trial, its application did not give any significant difference between the treatments in first ration crop. This can be due to Lime being a slow reacting component therefore, it is expected that a significance between the treatments can be visually observed after second ration evaluation. Based on the first set of data, it shows that Diuron if applied at the rate of 6 kg per hectare gives phytotoxic effect to the sugar cane plant. The growth is affected and scotching occurs on the leaf of the plant when sprayed. Similar trend was observed in the first ration crop whereas the result will be confirmed after the second ration crop is evaluated in 2016.

Planting legume has beneficial effects on the soil health and fixes nitrogen in the soil. This reduces the N fertiliser use which will eventually reduce the cost for farmers. It was observed that cowpea sprayed during flowering stage gave higher yield to cane planted in that treatment.

TRIAL 1: Effect of Farm Organic on Cane and Sugar Yields in Comparison with Recommended rates of chemical fertilization

Trial code:	LA1301P9
Location:	F/24 Drasa, Lautoka
Variety:	Naidiri
Trial Design:	Randomized Complete Block Design
Replications/Treatment:	6/4
Plot size:	6 rows x 10m x 1.37m
Date Planted:	26 November 2013
Date harvested:	26 August 2014

Details of treatments applied


Treatment 1:	NPK Blend A at planting: 2 bags/ha = 0.82 kg/plot = 0.137 kg/row of 10m Blend B: 6-8 weeks after planting-Blend B=14 bags/ha
Treatment 2:	NPK 50% + Farmorganix 50% Chemical Fertilsers-50% Blend A at planting: 1 bag/ha = 0.41 kg/plot = 0.07kg/row of 10m Blend B (50% of recommended rate): 7 bags/ha ; 6-8 weeks after planting Farmorganix-50% Application 1: Farmorganix at 2.5 L/ha = 20.55ml/plot = 3.43ml/row of 10m Application 2: 6-8 weeks after planting;Farmorganix at 2.5 L/ha =20.55ml/plot = 3.43ml/row of 10m
Treatment 3:	Farmorganix 100% Application 1 = 50% at planting = 5L/ha = 41.1 ml/plot = 6.85 ml/row of 10m Application 2 = 50% 6-8 weeks after planting = 5L/ha = 41.1 ml/plot = 6.85 ml/row of 10m

Treatment 4: Dip in 2.5% solution for 5-8 minutes. Application 1 = 50% at planting = 5L/ha = 41.1ml/plot = 6.85ml/row of 10mApplication 2 = 50% 6-8 weeks after planting = 5L/ha = 41.1ml/plot = 6.85ml/row of 10m

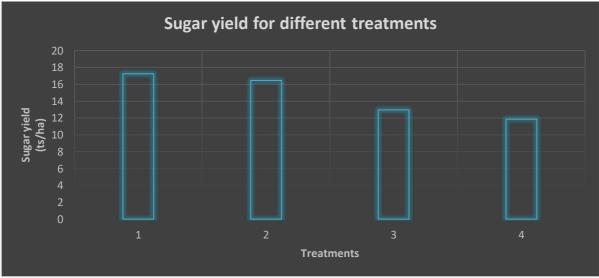

The purpose of this trial was to study the effect of Farmorganix/Stand Up on cane and sugar yields in comparison with recommended rates of chemical fertilizer. The trial was planted manually with 3 eye bud setts and covered with soil using a hoe. Pre-emergent herbicide (diuron 80 @ a rate of 5kg/ha) was applied. Germination of seed cane was counted and recorded. The young plants of Naidiri were affected by leaf scald. Percent infection ranged from 4 - 13 percent. Growth measurements were taken at 4 and 6 months after planting. The trial was harvested in August. The cane and sugar yield per hectare in each treatment is given below. The trial data were collated and analyzed statistically.

Table 1: Cane production in different rates of fertilizer – Organomix (tc/ha)										
Tet		Total	A.v.a							
Trt.	1	2	3	4	5	6	Total	Avg.		
1	118.4	106.0	126.3	140.5	135.2	130.7	757.1	126.2		
2	119.7	106.8	143.4	123.7	121.5	115.9	731.0	121.8		
3	84.5	96.7	111.3	104.6	79.9	106.8	583.8	97.3		
4	75.9	105.1	111.7	76.1	88.3	86.9	544.0	90.7		

Table 2: Sugar production in different rates of fertilizer – Organomix (ts/ha)										
T+		Tatal	A							
Trt.	1	2	3	4	5	6	Total	Avg.		
1	15.5	14.5	17.2	19.2	18.2	18.9	103.5	17.3		
2	16.4	14.8	18.7	16.5	17.0	15.6	98.8	16.5		
3	11.3	12.5	15.2	14.3	10.6	14.0	77.8	13.0		
4	10.2	13.2	14.7	9.9	11.8	11.5	71.2	11.9		

Graph 1: Cane yield (tc/ha) for different treatment

Graph 2: Sugar yield (ts/ha) for different treatment.

Table 3: Analysis of variance for tc/ha									
Source	DF	SS	MS	F	Р				
Replication	5	1323.3	264.7						
Treatment	3	5601.0	1867.0	13.4	0.0002				
Error	15	2092.7	139.5						
Total	23								

Table 4: Analysis of variance for ts/ha						
Source	DF	SS	MS	F	Р	
Replication	5	24.0	4.8			
Treatment	3	124.0	41.3	17.5	0.0000	
Error	15	35.4	2.4			
Total	23					

It is evident from the data (graph 1) that the yield of cane is significantly different at 1% significance level (p=0.0002) (Table 3) within treatments. The data shows that SumaGrow is capable of producing good tonnage, producing 90 - 97 tonnes per hectare (treatment 3 and treatment 4) of cane when used alone. However, the effect is enhanced when used in

combination with commercial fertilizer producing 121 tonnes per hectare of cane (treatment 2). Likewise, the tonnes sugar produced is significantly different within each treatment at 1% significance level (p= 0.0000) (table 4). However, the plots that had only commercial fertilizer Treatment 1 (100% NPK) produced better yield compared to Treatment 3 (100% SumaGrow).

Based on the calculated yield this trial showed that by applying SumaGrow in combination with commercial fertilizers, cane yield and subsequently sugar yield can be increased. However, the effects of SumaGrow needs to be studied on plant and ratoon stages of sugarcane on different soil types and different sugarcane varieties to be able to recommend SumaGrow for sugarcane.

TRIAL 2: The effects of potassium fertilization on plant cane and successive ratoons.

Trial code:	LA1101R9
Location:	Drasa, Lautoka
Variety:	Kiuva
Trial Design:	Randomized Complete Block Design
Replications:	4
Plot size:	9rows x 8m x 1.37m
Date Planted:	24 June 2011
Date harvested:	10 September 2012

Table 5: Treatments for	the trial		
Treatments	Muriate of Pot	ash (kg/ha)	
1	80		
2	125		
3	200		
4	40	40	(Split Application)
5	40	85	(Split Application)
6	40	160	(Split Application)

This trial was planted in 2011 with the aim of acquiring more information on response of different rates of potassium fertilization when adequate nitrogen and phosphorus are added. The treatment fertilizer used was Muriate of Potash (50%) at three different rates; 80, 125, and 200 K kg/ha. The trial has six treatments as shown in table 5 above.

Treatment 4, 5 and 6 are split application. The cane was supplied with top dressing of ammonium sulphate at 120 kg/ha 6 weeks after harvesting. Amine 2, 4 D and Velpar were applied as post emergence at 4 kg/ha after emergence of weeds. A pre-harvest sampling of cane was carried out from each treatment to determine %brix, %pol, %pocs %fiber. The cane from each plot was weighed to determine cane and sugar yields obtained from each treatment. The results obtained from the trial are tabulated below.

Table 6: %	∕₀brix in juice							
Tet	Reps						Tatal	A
Trt.	1	2	3	4	5	6	Total	Avg.
1	19.9	20.5	20.2	21.5	18.8	21.0	121.8	20.3
2	21.1	21.8	20.4	21.4	20.7	21.7	127.0	21.2
3	21.6	21.2	21.5	20.7	21.6	20.2	126.7	21.1
4	20.7	20.7	21.5	21.4	21.6	21.5	127.4	21.2

Table 7: %pc	ol in juice							
Trt			Reps				Total	Ava
116	1	2	3	4	5	6	TOLAI	Avg.
1	17.3	17.9	17.4	18.5	16.0	18.3	105.4	17.6
2	18.6	19.6	17.6	19.0	18.4	18.8	111.8	18.6
3	19.2	18.4	18.9	18.2	18.9	17.6	111.1	18.5
4	17.6	18.0	19.0	19.0	19.0	19.0	111.6	18.6
Table 8: %fit	per							
Trt. –			Reps				Total	Ava
II. –	1	2	3	4	5	6	TOLAI	Avg.
1	13.0	12.9	12.2	13.2	12.1	12.9	76.2	12.7
2	11.8	13.3	12.9	12.7	12.8	12.9	76.4	12.7
3	13.5	12.6	13.4	13.0	12.9	12.4	77.8	13.0
4	12.5	12.5	12.1	12.9	12.7	12.2	74.9	12.5
Table 9: % p	OCS							
-			Reps	5				-
Trt. –	1	2	3	4	5	6	Total	Avg.
1	13.0	13.4	13.1	13.7	11.9	13.7	78.8	13.1
2	14.2	14.8	13.1	14.5	13.9	14.0	84.5	14.1
3	14.4	13.9	14.1	13.6	14.2	13.2	83.4	13.9
4	13.1	13.6	14.5	14.4	14.3	14.5	84.3	14.1
Table 10: tc/	ha							
			Rep	5				_
Trt. –	1	2	3	4	5	6	Total	Avg.
1	31.6	25.2	25.6	24.3	21.0	33.8	161.5	26.9
2	23.7	34.4	14.3	38.3	11.6	31.3	153.6	25.6
3	27.7	33.2	33.5	26.5	32.2	25.2	178.2	29.7
4	20.1	10.0	45.9	40.5	24.9	38.9	180.4	30.1
Table 11: ts/	ha							
-			Rep	s				_
Trt.	1	2	3	4	5	6	Total	Avg.
1	4.1	3.4	3.4	3.3	2.5	4.6	21.3	3.6
2	3.4	5.1	1.9	5.5	1.6	4.4	21.9	3.6
3	4.0	4.6	4.7	3.6	4.6	3.3	24.8	4.1
4	2.6	1.4	6.7	5.8	3.6	5.7	25.7	4.3
Table 12: Ana	alvsis of Var	iance for	tc/ha					
Source		DF	-	SS	MS		F	Р
Replication		3		l.4	28.1			
Treatment		5	329		62.9		0.7	0.6341
Error		15	1418		94.5		-	
Total		23						
		23						

Table 13: Analysis of variance for ts/ha						
Source	DF	SS	MS	F	Р	
Replication	3	2.34	0.8			
Treatment	5	7.23	1.4	0.7	0.6521	
Error	15	32.38	2.2			
Total	23					

From the data obtained for the trial, it is evident there is no significant effect of potassium on cane (p=0.6341) and sugar (p=0.6521) yield. The cane yield is much lower than expected and this could be attributed to non-conducive weather conditions in 2014.

TRIAL 3: The effects of time of harvest on sugarcane yield in Fiji.

Trial No.:	LA1102R9
Location:	Drasa, Lautoka
Varieties:	Kiuva, Naidiri and Mana
Trial Design:	Split-plot design
Replications:	4
Plot size:	4rows x 7m x 1.37m
Date Planted:	24 June 2011
Date harvested:	
\triangleright	Early harvested : 07.07.14
\checkmark	Mid harvested: 12.08.14
~	

\succ	Late harvested:	26.09.14
---------	-----------------	----------

Replication 1	Replication 2	Replication 3	Replication 4
P1 T2 A	P1T2B	P1T1C	P1T1B
P2 T1 A	P2 T3 B	P2T2C	P2 T3 B
P3 T3 A	P3 ⊤1 B	P3 T3 C	P3T2B
P4 T2 B	P4 T2 A	P4 ⊤1 B	P4 T1 A
P5 ⊤1 B	P5 T3 A	P5 T2 B	P5 T3 A
P6 T3 B	P6 T1 A	P6 T3 B	P6 T2 A
P7T2C	P7T2C	P7 ⊤1 A	P7 T1 C
P8 T1 C	P8 T3 C	P8 T2 A	P8 T3 C
P9 T3 C	P9 ⊤1 C	P9 T3 A	P9 T2 C

Table 15: Definition of acro	onyms
Treatment	Harvest Season/ Variety
1	Early season[July 2014]
2	Mid-season[Aug 2014]
3	Late season[Sept 2014]
A	Mana
В	Naidiri
С	Kiuva
_P[#]	Plot [Number]

Three commercial varieties of sugarcane Kiuva, Naidiri and Mana were planted to evaluate optimum harvesting time for different varieties. The trial was harvested thrice in the harvesting season, early harvesting (July), mid harvesting (August) and late harvesting (September) and weighed manually. Six stalks were randomly selected from each treatment to determine %brix, %pol and %fibre and %pocs.

Source	DF	SS	MS	F	Р
Rep	3	4.5	1.5		
Variety	2	4.7	2.4	1.3	0.3466
Error Rep*Variety	6	11.1	1.9		
Treatment	2	19.1	9.6	26.5	0.0000
Variety*Treatment	4	1.0	0.3	0.7	0.6015
Error Rep*Variety*Treatment	18	6.5	0.4		
Total	35				

The tables below shows analysis of variances for selected parameters.

Source	DF	SS	MS	E	P
Source	DF	33	MIS	Г	<u>۲</u>
Rep	3	8.5	2.8		
Variety	2	20.3	10.1	8.5	0.0178
Error Rep*Variety	6	7.1	1.2		
Treatment	2	0.8	0.4	1.9	0.1837
Variety*Treatment	4	0.3	0.1	0.3	0.8650
Error Rep*Variety*Treatment	18	3.9	0.2		
Total	35				

Table 18: Analysis of variance for %fiber								
Source	DF	SS	MS	F	Р			
Rep	3	2.9	1.0					
Variety	2	57.1	28.5	59.4	0.0001			
Error Rep*Variety	6	2.9	0.5					
Treatment	2	0.1	0.04	1.1	0.3677			
Variety*Treatment	4	1.1	0.3	6.4	0.0022			
Error Rep*Variety*Treatment	18	0.8	0.04					
Total	35							

Source	DF	SS	MS	F	Р
Rep	3	420.6	140.2		
Variety	2	245.8	122.9	1.1	0.3895
Error Rep*Variety	6	665.5	110.9		
Treatment	2	377.4	188.7	4.5	0.0266
Variety*Treatment	4	57.6	14.4	0.3	0.8470
Error Rep*Variety*Treatment	18	760.9	42.3		
Total	35				

Source	DF	SS	MS	F	Р
Rep	3	8.4	2.8		
Variety	2	1.8	0.9	0.4	0.6973
Error Rep*Variety	6	14.0	2.3		
Treatment	2	23.8	11.9	13.7	0.0002
Variety*Treatment	4	0.8	0.2	0.2	0.9199
Error Rep*Variety*Treatment	18	15.6	0.9		
Total	35				

The sugar and cane yield obtained was very low. The first ration was lost to accidental fire and the fertilizer application for ration was applied which attributed to low yields. However, the tonnes of sugar obtained per hectare were found to be significantly different (p=0.0002)

within all three harvesting seasons. Yield of sugar was found to be higher in late harvesting season. The percent brix for Kiuva and Naidiri are higher than more commonly planted variety Mana in all harvesting season including early harvesting season.

TRIAL 4: Effect of lime on soil properties and sugarcane yield in Fiji

Location:	Drasa, Lautoka
Varieties:	Aiwa
Trial Design:	Randomized Complete Block Design
Replications:	4
Plot size:	6 rows x 10 m x 1.37 m
Date Planted:	16 April 2014

Table 21: Details of Treatments							
Treatments	Details						
1	No lime was applied						
2	0.7 tonnes per hectare of lime was applied in furrows						
3	1.4 tonnes per hectare of lime was applied in furrows						
4	2.1 tonnes per hectare of lime was applied in furrows						

The trial was planted manually with the aim of identifying effects of lime on soil properties and yield of sugarcane. Trial was laid out in April afterwhich the dry weather conditions setted in. Thus poor germination was noticed as per following table;

Table 22: Germination percentage									
T .+		Reps			Total	Ava			
Trt.	1	2	3	4	TOLAT	Avg.			
1	29.7	43.3	26.9	36.5	137	34			
2	45.7	41.0	27.6	25.8	140	35			
3	36.1	37.6	38.9	31.6	144	36			
4	38.6	48.7	34.8	24.2	146	37			

Growth measurements were taken at 3, 5 and 8 months after planting. The data for each measurement is tabulated below.

Table 23: Growth Measurement (Height of cane at 3 months)									
T.4		Reps			Total	Ava			
Trt.	1	2	3	4	IOLAI	Avg.			
1	30.5	37.0	24.8	38.5	131	33			
2	28.3	37.3	26.3	29.3	121	31			
3	33.5	28.8	33.8	33.3	130	33			
4	30.8	37.3	31.8	34.0	134	34			

Table 24: Growth Measurement (No. of tillers at 3 months)									
T .+		Reps			Tatal	A			
Trt.	1	2	3	4	Total	Avg.			
1	4.0	4.5	1.3	4.5	15	4			
2	3.3	6.0	2.8	3.0	15	4			
3	3.3	2.8	3.3	4.0	14	4			
4	3.5	4.0	4.5	6.3	19	5			

Table 25: Growth Measurement (Population count at 3 months)									
Trt		Reps	Total	Δνα					
····	1	2	3	4		Avg.			
1	65.0	104.0	51.5	87.0	308	77			
2	47.0	133.5	38.0	68.0	287	72			
3	69.0	74.5	63.5	77.0	284	71			
4	90.0	102.0	82.5	79.5	354	89			

Table 26: Growth Measurement (Height of cane at 5 months)								
- .		Reps			Total	A		
Trt.	1	2	3	4	Total	Avg.		
1	45.0	69.5	37.0	62.0	214	54		
2	35.5	75.0	41.8	51.3	204	51		
3	46.8	47.5	45.5	68.8	209	52		
4	52.5	65.0	48.3	69.8	236	59		

Table 27: Growth Measurement (No. of tillers at 5 months)								
T.4		Reps			Tatal	Ava		
Trt.	1	2	3	4	Total	Avg.		
1	4.0	7.8	2.5	5.8	20	5		
2	3.8	8.0	3.5	8.5	24	6		
3	4.8	4.0	3.8	8.0	21	5		
4	5.3	7.5	6.0	8.8	28	7		

Table 28: Growth Measurement (Population count at 5 months)									
T .+		Reps			Tatal				
Trt.	1	2	3	4	Total	Avg.			
1	68.5	116.5	59.0	96.0	340	85			
2	37.0	125.5	45.0	102.0	310	78			
3	66.0	81.5	57.5	100.0	305	77			
4	97.5	90.5	75.0	106.5	370	93			

Table 29: Growth Measurement (Height of cane at 8 months)								
Tet		Reps	Total	Ava				
Trt. —	1	2	3	4	Total	Avg.		
1	117.8	150.0	81.3	128.8	478	120		
2	75.0	156.3	95.0	120.0	447	112		
3	83.8	122.5	109.8	127.0	443	111		
4	112.3	130.0	117.3	127.5	487	122		

Table 30: Growth Measurement (No. of tillers at 8 months)									
Tet		Reps		Total	A				
Trt.	1	2	3	4	Total	Avg.			
1	8.3	10.0	4.5	7.5	31	8			
2	5.0	6.5	5.0	7.0	24	6			
3	3.8	7.0	4.5	11.0	27	7			
4	5.3	8.5	5.8	9.8	30	8			

Table 31: 0	Table 31: Growth Measurement (Population count at 8 months)								
T-+		Reps	Total	Ava					
Trt.	1	2	3	4	TOLAT	Avg.			
1	92.0	117.5	66.0	107.5	383	96			
2	73.5	122.0	80.0	99.0	375	94			
3	83.0	95.0	77.0	103.0	358	90			
4	106.5	113.5	107.5	115.5	443	111			

Samples will be selected randomly to be analyzed for biochemical analysis (%brix, %fibre, %pol and %pocs). The trial will be harvested manually in 2016. Each plot will be weighed and the data will be utilized to determine tons of cane and sugar produced.

TRIAL 5: Nitrogen trial - Labasa

Nitrogen is one of the main building blocks of protein. It is responsible for growth and expansion of green leaves and is essential for photosynthesis and sugar production.

Table 32: Nitrogen trial summary - Effect of nitrogen fertilizer on sugarcane yield								
Trial code	BA1301P9	BA1302P9	BA1303P9					
Location	Seaqaqa (Bulivou sector)	Waiqele	Waiqele					
Variety	Kiuva	Naidiri	Kiuva					
Trial Design	RCBD	RCBD	RCBD					
Reps/Trt.	4/4	4/4	4/4					
Plot size	6rows x 10m x 1.37m	6rows x 10m x 1.37m	6rows x 10m x 1.37m					
Date planted	24 April 2013	29th April 2013	08th May 2013					

Application rates of nitrogen in the field are determined by leaf and soil analysis done in the lab. Three nitrogen trials have been established in Seaqaqa to study the effect of different rates of nitrogen fertiliser on cane growth and yield in the field. The treatments and data collected on growth attributes are shown in the tables below:

Table 33: Details of treatments								
Trt.	Nitrogen rates	Time of Application						
1	60 Kg N per hectare	8 weeks after planting						
2	90 Kg N per hectare	8 weeks after planting						
3	120 Kg N per hectare	8 weeks after planting						
4	150 Kg N per hectare	8 weeks after planting						

Note: Blend A was applied at the rate of 3 bags per hectare as per laboratory recommendation

The 1st ration data from these trials shows that 150Kg N per hectare gave higher plant population with tallest plants, which was followed by 120Kg N per hectare. Even though T_4 recorded higher plant growth and population, T_3 gave economic growth which is desirable for profit in the field. The data in each table below shows the difference of each treatment:

Table 34: Growth attributes – Kiuva variety (BA1301P9)

	т:				Stalk							
Trt.	Tillers per stool			Population (10 ³)				Length (cm)				
116.		Mont	hs			Mon	ths			Mont	าร	
	3	5	7	9	3	5	7	9	3	5	7	9
1	7	5	4		80	72	60		27	48	86	
2	10	7	6		100	90	81		35	63	97	
3	12	10	7		137	130	122		44	82	157	
4	12	11	7		140	134	127		52	94	164	

Table 35: Yield attributes – Kiuva variety (BA1301P9)								
Trt.	tch	Fibre %	% Pocs	tsh				
1	98	10	16.4	16.0				
2	102	11	16.1	16.4				
3	126	12	16.3	20.5				
4	130	12	16.1	20.9				

 Table 36: Growth attributes – Kiuva variety (BA1303P9)

		Tillers per stool				Stalk							
Trt.	11	liers pe	r stooi		Po	opulatio	on (10 ³)		L	.ength ((cm)		
		Mont	hs			Mon	ths			Mont	hs		
	3	5	7	9	3	5	7	9	3	5	7	9	
1	6	5	5		88	72	58		20	60	77		
2	7	5	5		100	91	70		26	72	89		
3	9	8	7		146	132	120		33	98	143		
4	12	10	8		155	142	128		38	101	155		

Table 37: Yield attributes – Kiuva variety (BA1303P9)								
Trt.	tch	Fibre %	% Pocs	tsh				
1	90	12.6	16.1	14.5				
2	95	12.0	16.8	15.9				
3	126	12.5	16.7	21.0				
4	129	12.7	16.7	21.5				

Table	Table 38: Growth attributes – Naidiri variety (BA1302P9)											
Tillers per steel					Stalk							
Trt.	Tillers per stool				Population (10 ³)				Length (cm)			
		Mont	hs			Mon	ths			Mon	ths	
	3	5	7	9	3	5	7	9	3	5	7	9
1	5	4	4		55	49	45		18	32	67	
2	6	5	5		66	58	51		28	41	72	
3	8	7	5		84	77	73		36	54	109	
4	8	7	6		88	80	78		39	59	119	

Table 39: Yield attributes – Naidiri variety (BA1302P9)								
Trt.	tch	Fibre %	% Pocs	tsh				
1	121	12.5	15.9	19.2				
2	133	12.4	16.4	21.8				
3	161	11.8	17.0	27.4				
4	173	11.8	16.9	29.2				

The yield data from all three trial shows that adding **120kg N/ha** gave economical yield for the farmers. Adding 150kg N/ha also gave similar yield compared to 120kg N/ha, but was not economical. Also this rate is excess and will prove harmful for the soil and environment.

TRIAL 6: Lime trial - Labasa

Fiji soils are acidic in nature which may be one of the reasons attributed to the declining productivity of sugarcane. There are various reasons of increased pH such as:

- > Continuous cropping of sugarcane on Fiji soils
- > Soil erosion
- > Continuous use of ammonia based fertilisers on sugarcane cultivated soils

To verify this problem, two lime trials have been established in Seaqaqa to study the effect of lime on soil pH and cane sugar yield. Lime addition in the soil reduces soil pH which is desirable for cane growth.

Table 40: Lime trial summary – Effect of lime on sugarcane yield (Labasa Trials)							
Trial code	BA1304P9	BA1305P9					
Location	Seaqaqa (Solove sector)	Seaqaqa (Bulivou sector)					
Variety	Naidiri	LF91-1925					
Trial Design	RCBD	RCBD					
Replications/treatments	4/4	4/4					
Plot size	6 rows x 10m x 1.37m	6 rows x 10m x 1.37m					
Date planted	10th May 2013	14th May, 2013					

The treatments and data collected on growth attributes are shown in the table below:

Table 41: Details of treatments									
Trt.	Lime rates	Time of Application							
1	0 tonnes of lime per hectare	At the time of planting in the furrows							
2	1.3 tonnes of lime per hectare	At the time of planting in the furrows							
3	2.6 tonnes of lime per hectare	At the time of planting in the furrows							
4	3.9 tonnes of lime per hectare	At the time of planting in the furrows							
ALL DI									

Note: Blend A and B fertilizers were added according to laboratory recommendation after soil analysis

There was no significant difference in plant growth, stalk population and the tiller production between the treatments. Lime is a slow reacting component and the effect of it will take time, therefor the result of significance can be noticed in the ratoon. The yield of both trials showed similar trends as with growth attributes.

Lime is a soil amendment and only should be recommended to the soils with high pH. Those farms should be resampled to see the changes in soil pH. If the pH comes to its optimum level then lime is no longer required. The farmers should practice thrash blanketing and legume planting so that the nutrients are replenished back into the soil with less chance of increased soil pH. One of the main reasons of increased pH of the soil is the use of chemical fertilizer and continuous mono-culturing. The land should be fallowed for a while to avoid the buildup of H+ ions in the soil. The data are shown in the tables below:

Table 42: Growth attributes – LF91-1925 variety													
	T :1				Stalk								
Trt	111	lers pe	r stooi		Population (10 ³)				Length (cm)				
· · · · · ·	Months				Months				Months				
	3	5	7	9	3	5	7	9	3	5	7	9	
1	6	5	4		131	101	85		19	72	142		
2	6	6	5		138	105	88		22	70	148		
3	7	6	5		129	102	86		23	86	145		
4	7	6	6		140	109	91		21	83	138		

Table 43: Yield attributes – LF91-1925 variety										
Trt.	tch	Fibre %	% Pocs	tsh						
1	119	11.2	16.9	20.1						
2	120	11.8	16.3	19.5						
3	118	11.5	16.7	19.7						
4	124	12.1	16.4	20.3						

Table 44: Growth Attributes – Naidiri variety													
	T :1				Stalk								
Trt	111	lers pe	r stooi		Population (10 ³)				Length (cm)				
	Months			Months				Months					
	3	5	7	9	3	5	7	9	3	5	7	9	
1	6	5	4		96	78	73		31	88	171		
2	5	4	4		109	76	72		34	92	168		
3	6	4	3		102	80	76		36	95	174		
4	6	5	4		95	73	70		30	94	176		

Table 45: Yield attributes										
Trt.	tch	Fibre %	% Pocs	tsh						
1	114	12.1	16.2	18.4						
2	109	11.3	15.5	16.9						
3	113	11.8	14.8	16.8						
4	116	12.0	15.2	17.6						

TRIAL 7: Legume trial

Planting of legume crops with sugarcane tends to fix nitrogen in the soil and also becomes a source of cash income for the farmers. The 1st ratoon data showed that cowpea and peanut at after flowering stage gave better plant growth and yield.

Table 46: Legume tr	Table 46: Legume trial summary – Effect of Legumes on sugarcane yield									
Trial code	BA1306P9	BA1307P9								
Location	Labasa	Wailevu								
Variety	Ragnar, Mali, LF91-1925 & Naidiri	Ragnar, Mali, LF91-1925 & Naidiri								
Trial Design	Split –plot	Split - plot								
Rep/Trt.	3/4/4	3/4/4								
Plot size	6 rows x 10m x 1.37m	6 rows x 10m x 1.37m								
Date planted	17th Sept 2013	25th Sept 2013								

Growth assessment was carried out at 3, 5 and 7 months. The trials were sampled and harvested in September, 2015. The treatments, growth and yield attribute data are shown in the next set of tables.

Table 47	Table 47: Treatments								
Trt.	Main treatment - Diuron								
M1	Spraying of legumes before flowering								
M ₂	Spraying of legumes after flowering								
M ₃	Spraying of legumes after fruiting Sub Plot treatment - Varieties								
S ₁	Cowpea								
S ₂	Urd								
S₃	Peanut								

Table 48: Growth attributes

	Population (000/ha)												
Trt.		3			5			7					
	Mı	M ₂	Mз	Mı	M ₂	Mз	Mı	M ₂	Мз				
S ₁	146	128	109	121	106	96	87	70	64				
S ₂	165	143	132	118	107	97	90	80	77				
S ₃	168	145	138	128	118	104	82	76	74				
Total	479	416	379	367	331	297	259	226	215				
Avg.	160	139	126	122	110	99	86	75	72				

Table 49: Growth attributes											
	Stalk Length (cm)										
Trt.		3			5			7			
	Mı	M ₂	Мз	Mı	M ₂	M 3	Mı	M ₂	Мз		
S ₁	33	24	20	95	88	85	175	165	168		
S ₂	28	20	18	92	80	73	178	160	160		
S₃	24	20	19	90	78	77	178	158	160		
Total	95	73	76	291	260	253	541	459	500		
Avg.	32	24	25	97	87	84	180	165	167		

Table 50: Growth attributes

	Tillers Per Stool											
Trt.	3				5			7				
	M1	M ₂	Mз	M1	M ₂	Mз	M1	M ₂	Mз			
S1	7	7	7	6	6	5	5	5	5			
S ₂	7	7	6	5	5	5	4	4	4			
S ₃	5	5	5	6	5	6	4	4	4			
Total	19	19	18	17	16	16	13	13	13			
Avg.	6	6	6	6	5	5	4	4	4			

Table 5	Table 51: Yield attributes												
Trt.		tch			% Fibre			%pocs			tsh		
111.	Mı	M ₂	Mз	Mı	M 2	Мз	Mı	M ₂	Мз	Mı	M ₂	Мз	
S ₁	133	128.2	129.0	11.1	12.3	12.8	17.0	15.1	15.1	22.6	19.4	19.4	
S ₂	121	118.6	119.2	10.9	12.1	10.7	16.2	16.2	15.6	19.6	17.3	18.6	
S ₃	128	125.3	122.0	9.7	9.7	13.0	17.0	15.9	16.2	21.3	20.0	19.7	
Total	382	372.1	370.2	31.7	34.1	36.5	50.2	47.2	46.9	63.5	56.7	57.7	
Avg.	127	124.0	123.4	10.6	11.4	12.2	16.8	15.8	15.6	21.2	19.0	19.2	

Recommendations

- > More trials need to be established to evaluate the effects of potassium fertilizer application on cane and successive ratoons of Kiuva.
- Early maturing varieties such as Naidiri should be planted and harvested early to boost sugar production. Farmers should be encouraged to plant early maturing varieties.
- More lime trials should be conducted to collect data for recommendation of lime in farmers' field.
- Legume crop should be intercropped with sugar cane to reduce the usage of chemical fertilizer since it fixes nitrogen from the atmosphere into the soil. Also it gives additional income to the farmer as a cash crop.
- Diuron rate should not exceed 5kg per hectare as it gives phytotoxic effect to sugar cane plants. It may also become detrimental to the environment and increase cost of production. There is a rising concern surrounding the use of Diuron in Fiji. Farmers tend to continuously use it in the field and the weeds are beginning to show symptoms of resistance to this herbicide. A trial should be carried out with all necessary treatment to ascertain the resistance level of weeds to Diuron.
- 120kg per hectare of N is optimum for cane production in Vanua Levu soils as concluded from the Nitrogen trial. This rate supplies adequate nitrogen for optimum yield per hectare and farmers should apply this rate as a general recommendation and also follow lab recommendation from soil and leaf analysis where applicable.

Lime application is beneficial to soil. Accurate amount of lime application should be determined in the lab and recommendation should be given to the farmers so that appropriate amount is applied by the farmers. Since the effect of Lime is not always immediately observed after one crop season since last applied, more intense field trials are needed on application rates, methods and type of lime to determine the best application rates, methods and which lime source is beneficial and profitable for the farmers.

ANALYTICAL LABORATORY SERVICES

ANALYTICAL LABORATORY SERVICES

Summary

A total of 1503 soil samples were received in 2015 for analysis, comprising of advisory and research samples. A total of twenty leaf samples were received for analysis comprising only of advisory leaf samples. As a requirement to increase turnaround time for soil analysis, an alternative method for quantifying the amount of lime to be added as per soil pH has been trialed.

The sugar mill was able to crush 1404 samples in the year 2015 and the sugar laboratory successfully validated the 140 saved samples. As a continuous effort to fine tune the Spectra-Cane since its introduction in 2013, the successful analysis of 86% of the total samples received in 2015 has been hailed a success for the Spectra-Cane. This success was achieved with validations averaging 0.80 unit difference.

In light of the Quality Based Payment Scheme (QBPS) being proposed to be introduced in the Fijian Sugar Industry (FSI), there has been emphasis on sample validation and also adopting new instruments and procedures to increase efficiency and throughput. The introduction of QBPS created exposure for the laboratory staff to trainings hosted by SIT and FSC which was related to QBPS. The laboratory staff has also attended work attachment at the Fiji Sugar Mills to gain insight on the operations of the sugar process.

Recommendations

- > Improve turnaround time for soil and leaf samples through alternative methods of determining lime requirement.
- > Improve data quality in small mill by conducting parallel analysis with different equipment.

Introduction

The analytical laboratory acts as a link between the growers and the industry by providing analytical services for advisory and research programmes. This service is essential due to the rising cost of fertilizers and to maintain optimum production in the future. Analytical services provided by SRIF analytical laboratory include soil, leaf and cane analysis. Soil and leaf samples are received from all sugar cane districts including Penang, Rarawai, Lautoka and Labasa for analysis and fertilizer recommendation.

The sugar laboratory also carries out all sugarcane related analysis required in the Institute. The laboratory may either analyse sugarcane as a whole or as a part (juice). The analysis considered is dependent on the requirement of the researcher. The Lautoka sugar laboratory analyses sugarcane samples from the respective mill areas as per requirements for research and breeding programs.

With the introduction of the Spectra-Cane in 2013 several activities have been adopted to better monitor the performance of the instrument over time. Several incidents required the presence of the Spectra-Cane consultant that made various modifications which later resulted in a successful 2015 small mill operation. With regards to the introduction of the QBPS in the FSI, the sugar laboratory now embarks on enduring into adopting new methods and instruments to attain optimum efficiency and throughput.

Soil Analysis

A total of 1503 soil samples were analyzed, of which 167 were research soil samples and 1336 were advisory soil samples. Reports are released by email as soon as it's available from the laboratory to the Fiji Sugar Corporation Ltd Extension staffs. The laboratory is equipped and staffed to process samples quickly and efficiently that the sample requests are completed within two weeks from the date samples are received at laboratory.

Table 1: Summary of soil samples for 2015										
Mill	Advisory	Research	Total							
Lautoka	549	137	686							
Rarawai	562	-	562							
Penang	10	30	40							
Labasa	215	-	215							
Total	1336	167	1503							

Leaf Analysis

The analytical laboratory received a total of 20 leaf samples for advisory services but due to equipment malfunction, the sample analysis is currently pending.

Table 2: Summary of plant samples for 2015.				
Mill	Advisory	Research	Total	
Lautoka	20	-	20	
Rarawai	-	-		
Penang	-	-		
Labasa	-	-		
Total	20	-	20	

Quality Assurance

The analytical laboratory took part in ASPAC proficiency programs. The laboratory continues to adhere to quality control checks in every analysis. A new quality control sample will be made in 2016 which will be used for quality checks in analysis. The laboratory conducts the QC checks by having standards as well as random control samples and referring to the accepted range of values for QC samples. Any value out of this range is investigated and corrective measures are undertaken to ensure the criteria set for quality assurance is followed. The laboratory also carries out its internal quality assurance on calibration of laboratory equipment and instruments, training and documentation.

Research Trials

Lime Buffering Capacity Trial – A modified approach.

It has been observed that the amount of soil having low pH has been increasing over the years. With the interest of the Fijian sugar industry to increase the mill efficiency it is important to ensure that sugarcane are planted in the right conditions where applicable. Hence the analytical laboratory has been involved in trialing a method of determining the amount of lime to be added to growers' field in order to buffer the soil conditions where pH is extremely low.

This modified method has been considered to be used as a routine method of analysis. As a small scale trial the soil samples received in 2014 were used to validate the modified method.

All soil samples with low pH were treated using the modified method and compared to the current SRIF Lime Recommendation method. According to the study it was observed that the results obtained from the modified method is similar to that of the current SRIF method as illustrated in Table 3.

Table 3: A summary of analysis result on LBC-modified method				
Total no of soils	834			
Total no of soils with low pH	405			
Total no. of soil types	18			
Average (difference between LBC & pHBC)	0.4			
Max Difference	0.98			
Min Difference	0.02			
Correlation	0.98			

Trainings

Two sessions of training was provided by Fiji Sugar Industry Tribunal on the "Procedures for the operation of the Cane Quality Payment Scheme" on the 17th and 18th of August. Staff who took part in this training were;

- Mr. Prema Naidu
- Ms. Doreen Pillay
- Ms. Nazeea Bano
- Ms. Mere Tauvoli
- Ms. Milika Vanigi
- Mrs. Merlyn Goundar
- Mr. Suresh Mani

The training highlighted how the Fiji Sugar Industry has resolved SRIF to undertake professional reviews of the operation of the Cane Quality Department (CQD) thus SRIF has to undertake regular visits to the mills next year.

Biochemical Analysis

The small mill aims to provide necessary information on cane such as %pol, brix, %fiber and %POCS to respective personnel in the institute regarding various ongoing trials. Moreover, it is a vital aspect for determination of variety selection from the initial stages till the final selection of breeding trials.

A total of 1404 cane samples were crushed for the year. This consisted of samples for Stage 4 (LF2009, LF2008 and LF2010) trials, Stage 3 (LF2012) trials, Stage 2 (LF2013) trials and Agronomy trials (lime, potassium and time of harvest), Pest & Disease and Variety trials. Majority of the samples crushed were received from the variety selection program as displayed in figure 1.

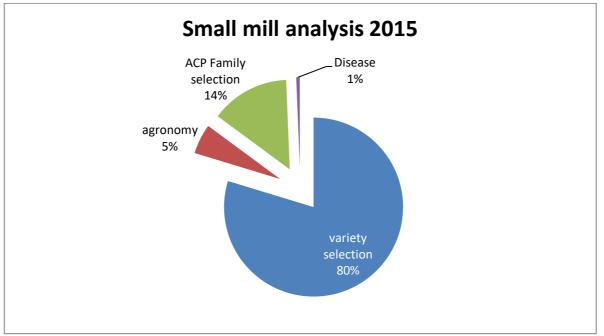


Figure 1: Percentage of samples received from respective departments.

During the season majority of the samples were analysed by NIR while the remaining were analysed by the classic method (Jeffco Grinder). The interchange of method of analysis was due to occurrence of power disruption. This year may be marked as an achievement as the percentage usage of the NIR peaked at 86% as compared to the previous years as displayed in the table below.

Table 4: Three-Year Summary of Spectra-Cane success					
Year	Frequency of instrument use (%)	No. of samples crushed (%)			
2013	75	85			
2014	54	64			
2015	85	86			

Table 5: Summary of cane samples for 2015					
Trial name		No of samples	Total		
Variety	LF 2010 – Stg 4	147			
	LF2009 – Stg 4	143			
	LF 2008 – Stg 4	91	1319		
	LF 2012- Stg 3	98	1519		
	LF 2013 – Stg 2	520			
	ACP Family selection	200			
Agronomy	Lime trial	16			
	Potassium trial	24	76		
	Time of Harvest	36			
Disease	Pest & Disease	9	9		
Grand Total			1404		

All the data has been processed and returned to respective personnel. Parallel analysis for validation of the spectra-cane has continued accordingly, whereby the validation data has been sent to the consultant (Mr. David Marston) for analysis. As the matrix had been serviced by the consultant earlier in the year, an improvement on the parallel analysis has been observed. The validation difference in fiber values was at 5 units in 2014; now down to approximately 2 units in 2015 as illustrated in table 6 below.

ANALYTICAL LABORATORY SERVICES Page 33

Table 6: A summary of sugarcane juice analysis validation (2015)						
	Av. Diff	Max Diff	Min. Diff	Corr.		
Brix in Juice	0.9	3.2	0.1	0.5		
Pol in Juice	1.3	4.2	0.3	0.3		
Fiber in Cane	0.8	2.1	0.1	0.8		
Purity	4.2	12.3	-1.6	0.3		
POCS	1.4	3.8	0.2	0.3		

Frontier Transform Infra-Red (FTIR) trial.

The analytical laboratory has been selected to trial the use of the Alpha FT-IR spectrometer (figure 2) to analyse cane juice. The instrument was supplied by Bruker Optics of New Zealand for a 3 months trial. As this was an initial trial on sugarcane juice the development of a database was required. Thus the sugar laboratory was able to analyse 218 samples in conjunction with the use of the classical methods as validation of the developed spectra. All developed spectra along with wet laboratory readings were returned to the consultants for evaluation. As per evaluation reports the commercial variety samples have demonstrated that the sugarcane juice starter calibration with good R² and relatively low errors (RMSECV) can be achieved as illustrated in table 7 below. The analysis on FTIR is conducted in parallel with the conventional method (polatronic, refractometer, pH meter, UV-Vis spectrophotometer) for validation purpose. The trial intended to include sugarcane juice analysis for the major constituents (starch, gums, dextran, reducing sugars, pol, brix, phenolic acids) per sample and to determine the amounts of constituents in response to deterioration.

Figure 2: The portable Alpha-FT-IR spectrometer.

Table 7: Sugarcane Juice starter calibration performance (Alpha-FTIR)							
Parameters	n	R2	RMSECV	RPD	Rank	Range	Performance
Brix	93	95.7	0.3	4.9	3	17-25	QC
Pol	93	96.2	0.4	5.1	4	13-23	QC
Sugar	89	97.2	1.5	5.9	3	55-96	QC
Purity	90	90.1	1.0	3.2	8	77-95	Screening
рН	97	88.9	0.2	3.0	6	3.6-5.5	Screening

The small mill intends to improve its service in the coming crushing season by:

- > Increasing the amount of samples analysed by NIR.
- > Conducting parallel runs for validation.
- > Adopt other sugar methods, hence a wider range of analysis per sample.

Quality Based Payment Scheme (QBPS) - Audit

As the Fiji Sugar Industry embarks on adopting the QBPS, SRIF has been appointed to act as an external auditor. Hence the analytical laboratory staff has been assigned by SRIF to participate in this imperative task. A staff (Ms. Mere Tauvoli) has been actively involved in this activity while the other laboratory staff has been involved as support staff in ensuring the success of the program. All the laboratory staff had attended Phase I and Phase II training on the requirements of QBPS and carrying our auditing of the task carried out by the CQD (SIT). Both the training was conducted by Mr. Bernard Milford. After the second training a trial audit was conducted at Lautoka and Rarawai mill respectively to verify the applicability of the developed procedures for Operation of the Cane Quality Payment scheme and to practice the developed scope of work for audit. The program is proposed to officially commence in 2016.

Trainings

Phase I: Analysis of Audit of Cane for the Fijian Cane Quality Scheme.

The analytical laboratory staff and agronomy staff attended training on the 12th of February, 2015 which was conducted by Mr. Bernard Milford. The training was conducted at the Lautoka Mill. The training also included representatives from all Industry stakeholders that were directly involved with the QBPS (FSC (millers), SIT (CQD) and SCGC). The training emphasized on the responsibilities of each parties involved and the importance of compliance with the agreed QBPS operation procedures. A checklist was introduced whereby all the attendees evaluated and agreed on the activities that were vital and applicable for the scheme.

FTIR operations training.

Two analytical staff (Mere and Milika) were trained on the use of the Fourier Transformer Infrared (FTIR) by Mr. David Marston.

Phase II: Fiji Sugar Industry Tribunal Procedures for the Operation of the Cane Quality Payment Scheme (the Procedures)

The analytical laboratory and agronomy staff attended Phase II training of QBPS at the Lautoka Mill Training center on the 17th of August, 2015. The training was conducted to review the proposed QBPS auditing procedure and amend as discussed and agreed amongst the partners, to best suit all aspects of the sugar industry. The workshop was conducted as an interactive meeting whereby the representatives of the various stakeholders were to raise their views and issues as the program progressed. The Progress of discussion was as follows:

- View of the millers & growers on the subject of QBPS implementation in the Fiji Sugar Industry (FSI)
- ✓ Review of documented procedures
- ✓ Review of checklists
- ✓ Trial run with procedures & checklists
- ✓ View of IMG's & growers on provision of feedback to growers
- ✓ Role of SRIF in the QBPS
- ✓ Alternative methods to be adopted if necessary
- ✓ The Future of Cane Quality Department

Fiji Sugar Mill Attachment

As a requirement of the institute one of the laboratory staff (Mere) has been assigned for mill attachment for familiarization of milling processes. As all the four Fiji sugar mills differ in processing arrangement it has be required that the staff attends work attachment at all the mills respectively. During the year 2015 the staff was able to attend work attachment at

Lautoka and Rarawai mill. During the attachment the staff has gained knowledge in the different setups of the two mills and how sugarcane is processed respectively to obtain similar required raw sugar at the end of the day.

Recommendation

- Purchase of UV-VIS spectrophotometer to develop the range of Biochemical analysis for sugarcane samples.
- Adopting latest analytical methods and instruments for increased efficiency and throughput and to develop new paths in sugarcane biochemical research.
- Improve Occupational Health and Safety Conditions in the Laboratory and Small Mill.
- Installation of a power stabilizer to safeguard instruments against power failure or fluctuations
- Improve the functionality of the Spectra-Cane (NIR), by reducing the amount of outliers obtained per batch. Updating the current manuals in the laboratory (MSDS, Quality Assurance System, and Equipment and Work procedures).
- Training in QBPS auditing at a sugar mill with existing practice.

The laboratory aims to provide resourceful and reliable data to growers, research staffs and other non-stakeholders. The decline in soil samples received by the laboratory is an issue of concern. The farmers are advised and leader farmers' trained to take samples by themselves to make maximum benefit from the free service available for them. The sugar laboratory will continue to carry out its routine activity and provide reliable data to research staff for the betterment of the sugar industry. The sugar laboratory will continue to endeavor into new inclusions of methods or instruments that is applicable to increase the efficiency and throughput of the Institute and in turn the Fiji Sugar Industry

METEOROLOGY

METEOROLOGY

Summary

- Daily meteorological readings were recorded at 9am and maximum temperature readings were recorded at 3pm.
- Drier than normal conditions were experienced across the sugarcane belt over the past several months.
- Majority of the sugarcane growing areas were currently in meteorological drought.

Highlights

- Pacific island climate outlook forum (PICOF-1) was held from October 12-16, 2015 in Suva with the special focus on the water resources management sectors of the Pacific Island region.
- El Nino emerged in March and matured to moderate strength by June and reached strong El Niño category in August. In November, it reached its peak intensity but weakened some of its indicators in December.
- Current conditions are still indicative of a strong El Niño and are expected to continue for at least the next three months.
- In December, warm sea surface temperatures anomalies extended across nearly the entire equatorial Pacific.
- Trade winds have been consistently weaker than average
- Cloudiness has been above the long term average
- The Southern Oscillation Index (SOI) has dropped to -16.3 and the atmospheric and oceanic anomalies reflect the presence of a strong El Niño in the Pacific.

Introduction

The Meteorological Station at Sugar Research Institute of Fiji is equipped with a range of meteorological instruments and maintained with the help of the Fiji Meteorological Service (FMS) at its head office in Drasa, Lautoka and three other daily Climatological recording centers. Climatological station is manned by observers who take climate readings of temperatures (dry, wet, maximum and minimum, earth temperatures at 5cm, 10cm and 50cm, rainfall, amount of cloud, visibility and wind force and direction) at 9am daily. At the end of each month, data is compiled in a designated F211 form and forwarded to FMS. Similarly, rainfall figures from each sector from the eight districts are compiled and kept for our records. The climatic data is used to produce climate summary and predicting of weather forecast for the country. The Research Institute provides a summary statement towards the Fiji Sugar Cane Rainfall Outlook which becomes an advice to farmers on possible farm activities such as land preparation, cultivation, fertilizer application, weedicide application and harvesting from sugarcane belt areas.

El Niño Southern Oscillation (Enso)

ENSO is an irregular cycle of persistent warming and cooling of sea surface temperatures in the tropical Pacific Ocean. The warm extreme is known is El Niño and the cold extreme, La Niña. Scientists now refer to an El Niño event as sustained warming over a large part of central and eastern equatorial Pacific Ocean. This warming is usually accompanied by persistent negative values of Southern Oscillation Index (SOI), a decrease in the strength or reversal of the trade winds, increase in cloudiness in the Pacific and a reductions in rainfall over most of Fiji which can, especially during moderate to strong events, lead to drought. La Niña is a sustained cooling of the Pacific Ocean. The cooling is usually accompanied by persistent positive values of SOI, and increase in strength of the trade winds, decrease in cloudiness and higher than average rainfall for most of Fiji with frequent and sometimes severe flooding, especially during the wet season (November to April).

Rainfall

Fiji enjoys a tropical maritime climate without extremes of heat or cold. Considering the current ENSO conditions, Fiji experienced severe rainfall deficiency during the season. In other words, the total annual rainfall was below average across the country. The annual rainfall for all the 4 mills was **below average** when compared to the 46 years long term mean. The most-to-least driest mill, in order was Lautoka, Rarawai, Labasa and Penang respectively. Lautoka had an average of 150mm of rainfall compared to 46 year mean of 306mm, Rarawai had an average of 169mm of rainfall compared to 46 year mean of 342mm, Labasa had an average of 180mm of rainfall compared to 46 year mean of 353mm and Penang had an average of 202mm of rainfall compared to 46 year mean of 306mm.

Lautoka Mill

The least rain was recorded at Olosara sector of 68.2mm and the most rain was recorded for Malolo, which had 139mm of rainfall.

Rarawai Mill

The least rain was recorded at Yaladro sector of 64.3mm and the most rain was recorded for Koronubu, which had 142mm of rainfall.

Penang Mill

The least rain was recorded at Ellington 1 sector of 37mm and the most rain was recorded for Malau, which had 109mm of rainfall.

Labasa Mill

The least rain was recorded at Labasa estate of 80mm and the most rain was recorded for Seaqaqa estate, which had 135mm of rainfall.

Table 1: Rai	nfall (I	mm) f	or all	mills	- 201	5								
Mills	Jan	Feb	Mar	Apr	Мау	Jun	JuC	Aug	Sep	Oct	Νον	Dec	Total	Average
					Lauto	ka Mi	II - 2	015						
Monthly rainfall	212	342	130	64	10	9	27	35	43	19	2	82	974	81
No. of rain days	12	16	14	5	2	2	1	8	8	5	1	14	88	7
46 yrs avg.	377	313	323	189	87	69	52	70	80	98	138	197	1991	166
(1970-2015)					Rarav	vai Mi	ill - 2	015						
Monthly rainfall	196	246	143	82	13	8	5	22	53	43	7	283	1101	92
No. of rain days	7	23	13	5	1	2	1	5	7	3	1	14	82	7
46 yrs avg. (1970-2015)	418	353	382	205	97	82	43	65	77	107	161	233	2222	185
<i>iii</i> _ <i>i</i>					Pena	ng Mi	II - 20	015						
Monthly rainfall	150	364	143	102	72	15	5	53	59	124	28	196	1310	109
No. of rain days	24	21	20	14	10	10	4	12	12	5	11	14	157	13
46 yrs avg. (1970-2015)	410	353	376	267	158	96	51	69	88	111	181	267	2427	202
					Labas	sa Mi	I <mark>I - 20</mark>)15						
Monthly rainfall	185	404	175	105	59	2	Nil	82	36	7	27	86	1167	97
No. of rain days	11	21	13	9	4	1	Nil	6	10	3	11	7	96	8
46 yrs avg. (1970-2015)	401	354	368	239	110	76	53	50	75	122	187	259	2294	191
Table 2: Rain	fall da	ata (n	nm) fo	or Lau	toka.	Nadi a	and S	Sigato	ka Dis	stricts	5 - 20	15		
														ø
Sector	Jan	Feb	Mar	Apr	Мау	Jun	luC	Aug	Sep	Oct	Νον	Dec	Total	Average
Drasa	242	357	212	109	1	2	21	60	77	2	2	149	1233	103
No. of rain days	7	14	10	4	1	2	1	6	8	1	1	13	68	6
Lautoka	212	342	130	64	10	9	27	35	43	19	2	82	974	81
No. of rain days	12	16	14	5	2	2	1	8	8	5	1	14	88	7
Saweni	220	475	433	100	Nil	10	18	81	62	25	Nil	117	1539	128
No. of rain days	12	17	14	5	0	2	1	8	6	4	0	12	81	7
Natova	183	328	184	125	Nil	14	25	69	57	27	2	138	1152	96
No. of rain days	13	23	14	5	0	3	1	8	8	4	1	15	95	8
Legalega	187	420	214	99	Nil	16	26	54	75	34	44	215	1384	115
No. of rain days	14	19	15	4	0	2	1	7	6	3	1	13	85	7

Table 2: Cont'd														
Sector	Jan	Feb	Mar	Apr	Мау	Jun	Inc	Aug	Sep	Oct	Nov	Dec	Total	Average
Meigunyah	223	366	133	74	Nil	12	24	49	76	17	33	161	1166	97
No. of rain days	13	20	17	4	0	2	1	7	6	4	1	13	88	7
Yako	259	277	165	118	Nil	10	115	92	64	3	15	145	1264	105
No. of rain days	10	14	14	2	0	2	1	4	5	2	1	11	66	6
Malolo	305	410	299	119	Nil	8	35	64	103	18	21	288	1668	139
No. of rain days	11	20	19	4	0	3	1	7	6	3	1	12	87	7
Nawaicoba	195	215	123	84	Nil	4	46	83	75	24	3	308	1160	97
No. of rain days	11	16	12	2	0	1	1	7	5	4	1	13	73	6
Lomawai	122	234	238	52	5	28	24	37	106	4	Nil	226	1076	90
No. of rain days	11	13	9	3	2	4	1	8	7	1	0	9	68	6
Cuvu	121	342	121	44	32	65	30	66	114	10	Nil	146	1092	91
No. of rain days	8	17	11	4	4	10	1	11	8	7	0	11	92	8
Olosara	89	343	136	Nil	Nil	Nil	Nil	51	94	3	Nil	101	818	68
No. of rain days	5	14	6	0	0	0	0	10	5	2	0	10	52	4

Table 3: Rainfall data (mm) for Rarawai and Tavua Districts - 2015														
Sector	Jan	Feb	Mar	Apr	May	Jun	InC	Aug	Sep	Oct	Νον	Dec	Total	Average
Varoko	107	224	154	90	9	2	14	24	60	40	10	234	968	81
No. of rain days	5	9	12	1	1	1	1	3	5	1	1	11	51	4
Mota	359	334	201	101	10	Nil	3	27	48	Nil	Nil	156	1239	103
No. of rain days	17	11	10	4	1	0	1	5	4	0	0	13	66	6
Koronubu	312	519	261	86	7	1	22	31	76	16	Nil	369	1700	142
No. of rain days	11	14	10	4	1	1	1	6	8	1	0	12	69	6
Rarawai	196	246	143	82	13	8	5	22	53	43	7	283	1101	92
No. of rain days	7	23	13	5	1	2	1	5	7	3	1	14	82	7
Veisaru	169	208	141	45	23	15	5	38	65	20	8	146	883	74
No. of rain days	7	14	9	2	1	2	1	3	7	2	1	9	58	5
Varavu	209	231	156	31	15	11	15	12	73	18	4	121	896	75
No. of rain days	6	13	9	2	1	2	1	2	7	2	1	9	55	5
Naloto	377	303	208	120	22	Nil	5	38	53	Nil	Nil	171	1297	108
No. of rain days	18	11	11	4	1	0	1	5	4	0	0	13	68	6

Tabl	e 3: (Cont'd
------	--------	--------

Sector	Jan	Feb	Mar	Apr	Мау	Jun	JuC	Aug	Sep	Oct	Nov	Dec	Total	Average
Tagitagi	190	379	151	33	9	Nil	16	29	82	27	Nil	101	1017	85
No. of rain days	8	11	7	2	2	0	1	4	7	2	0	7	51	4
Drumasi	312	311	231	57	2	Nil	11	34	77	25	16	53	1129	94
No. of rain days	10	10	7	2	1	0	1	4	7	2	1	5	50	4
Yaladro	179	242	145	17	17	Nil	13	24	59	19	6	50	771	64
No. of rain days	9	11	8	2	2	0	1	4	7	2	1	6	53	4

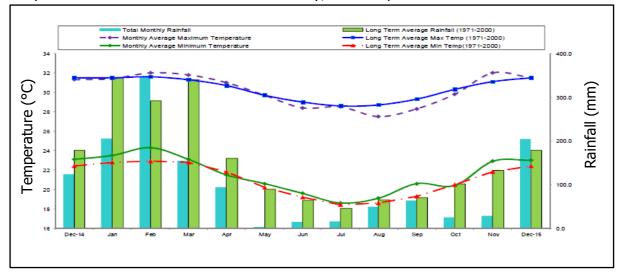
Table 4: Rainfall data (mm) for Penang District - 2015

Sector	Jan	Feb	Mar	Apr	May	Jun	JuC	Aug	Sep	Oct	Νον	Dec	Total	Average
Ellington 1	*NR	9	107	99	30	27	19	48	70	30	6	NR	443	37
No. of rain days	NR	3	28	22	9	13	10	14	14	8	2	NR	123	10
Malau	150	364	143	102	72	15	5	53	59	124	28	196	1310	109
No. of rain _days	24	21	20	14	10	10	4	12	12	5	11	14	157	13
Nanuku	110	365	129	49	8	12	5	23	71	27	Nil	24	823	69
No. of rain _days	6	13	7	4	2	2	1	5	5	1	0	3	49	4
	211.4	212.3	241	150.1	68.5	49	21	21	60	47	35	132	1247	104
No. of rain days	16	16	16	12	9	8	7	7	12	7	9	18	137	11

**NR – Not Recorded* Table 5: Rainfall data (mm) for Labasa and Seaqaqa District - 2015

Sector	Jan	Feb	Mar	Apr	Мау	Jun	Ρ	Aug	Sep	Oct	Νον	Dec	Total	Average
Waiqele	259	712	216	116	67	0.1	Nil	83	17	41	54	19	1584	132
No. of rain days	13	24	14	10	4	1	0	7	10	4	7	9	103	9
Wailevu	277	421	172	70	52	23	2	98	28	5	29	50	1227	102
No. of rain days	21	27	20	12	5	3	2	10	11	3	9	7	130	11
Vunimoli	369	515	209	158	93	4	Nil	98	50	4	21	102	1624	135
No. of rain days	13	19	11	7	4	1	0	5	10	3	11	6	90	8
Labasa	185	404	175	105	59	2	Nil	82	36	7	27	86	1167	97
No. of rain _days	11	21	13	9	4	1	0	6	10	3	11	7	96	8
Bucaisau	187	487	194	101	76	59	2	164	41	37	19	79	1446	120
No. of rain days	11	17	11	10	2	5	1	9	4	3	5	4	81	7

Table 5: Cont'd


Sector	Jan	Feb	Mar	Apr	May	Jun	InC	Aug	Sep	Oct	Νον	Dec	Total	Average
Wainikoro	210	438	248	140	108	27	Nil	100	78	30	44	21	1444	120
No. of rain days	11	21	11	9	3	2	0	8	6	4	6	5	86	7
Daku	44	39	117	18	26	8	26	7	11	Rain	gauge	and	295	33
No. of rain days	7	8	15	6	6	3	10	3	5		dama		63	7
Labasa Estate	144	410	214	65	68	1	Nil	6	32	2	15	3	960	80
No. of rain days	9	21	13	9	6	1	0	1	10	2	9	2	83	7
Natua	107	289	98	88	22	3	10	77	80	54	152	NA	980	89
No. of rain days	16	23	14	10	3	1	2	7	9	2	6	NA	93	8
Solove	105	506	277	112	*NA		Nil	NA	NA	175	117	NA	1291	184
No. of rain days	3	12	12	2			0	NA	NA	1	2	NA	32	5
Bulivou	24	346	150	168	58	50	Nil	NA	4	52	73	NA	924	92
No. of rain days	2	19	6	10	2	3	0	NA	1	3	2	NA	48	5
Seaqaqa Estate	338	525	245	126	22	4	10	77	81	54	138	413	2033	169
No. of rain days	18	23	17	8	3	2	2	7	9	2	6	17	114	10

*NA - Information Not Available

Table 6: Meteoro	ologica	al data	a for S	ugar l	Resear	ch Ins	stitute	e of Fij	ji, Lau	toka 2	2015		
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Avg.
Relative Humidity (%)	77	78	73	67	70	68	68	69	68	58	59	64	68
46 yrs avg.	75	79	77	75	74	72	69	68	69	66	70	72	72
				Ai	ir Tem	peratu	ıre						
Mean Maximum	29	31	31	31	30	29	29	28	28	30	31	32	30
46 yrs avg.	32	31	31	31	30	28	28	28	29	31	31	31	30
Mean minimum	24	24	23	22	21	20	19	19	20	20	23	23	21
46 yrs avg.	24	24	24	24	22	20	20	20	21	26	23	23	23
Mean	26	28	27	26	26	25	24	23	24	25	27	27	26
Highest maximum	32	34	34	33	33	33	32	32	32	32	34	34	33
Lowest minimum	22	24	20	19	17	15	15	14	14	13	18	20	17
					Evapo	ratior	1						
Raised pan	190	143	170	143	141	119	153	138	133	205	216	177	161
				Ear	th the	mome	eters						
5cm	-	-	-	-	-	-	-	-	-	-	-	-	-
46 yrs avg.	-	-	-	-	-	-	-	-	-	-	-	-	-
10cm	28	29	28	27	26	25	24	24	25	27	30	29	27
46 yrs avg.	-	-	-	-	-	-	24	24	26	-	29	29	26
50cm	-	-	-	-	-	-	-	-	-	-	-	-	-
46 yrs avg.	-	-	-	-	-	-	-	-	-	-	-	-	-

Temperature

The highest monthly average maximum temperature was recorded for the month of February and November, with temperatures more than 32°C. The lowest monthly average minimum temperature was recorded for the month of July, with temperature less than 20°C.

Figure 1: Temperature and Rainfall Records for the last 13 months (*Dec 2014 – Dec 2015*) *for Western Division - Ref: FIJI METEOROLOGICAL SERVICE - Fiji Climate Summary, December, 2015.*

Earth Thermometers

The earth thermometers at SRIF are at depths of 5cm, 10cm and 50cm. The annual average for 10cm earth thermometer was above normal (27°C) than the long term average of (26°C). 8 out of the 12 months recorded temperatures more than the long term average.

Evaporation

The annual evaporation average of the raised pan was 6mm less compared to last year. This year, evaporation value was 161mm while for year 2014, the value was 167mm.

Relative Humidity

The average humidity recorded for 2015 was 68% whereas the long term average was 72%. The first quarter of the year recorded values higher than the long term average, i.e. more than 72% whereas the rest of the months recorded relative humidity less than the 46 years mean.

Sunshine

There is no sunshine recorder installed at the Drasa meteorological station (Station No: V77555)

CROP PROTECTION

CROP PROTECTION

Summary

Plant Parasitic Nematodes Survey

Forty soil samples were collected from 30th September to 12th October. The soil samples were taken from the Penang mill regions of Malau, Nanuku, Ellington 1 and Ellington 2 Sectors. Plant parasitic nematodes were detected from soil extraction, the % incidence of *Helicotylenchus* and *Rotylenchulus* was high.

Fiji Leaf Gall Screening of Stage 3 Clones

A trial was conducted during the year 2015 from February to November, on screening of clones of the 2012 series. The results were highly significant (P<0.000). There were negative linear relationships between standards and days (R^2 =0.874). The study has showed that 79% clones were resistant, 13% clones were moderately susceptible and 8% clones were susceptible.

Cane Grubs

Active survey of cane grubs was carried out by digging out the roots and soil in Malau, Lovu, Drasa and Lautoka sector. Samples were sent abroad (Mauritius) for identification. A preliminary survey for the grubs started on the 4th of August, 2015 and to date it has been found that Lovu sector is the most affected. Roots of plants showing symptoms were dug out and grubs were collected and put in containers.

Recommendation

Plant Parasitic Nematodes

- Further training in nematodes
- Establishment of nematodes lab with work bench.
- There is a need for a refrigerator for samples collected.
- Certain equipment are required such as blender, multichannel counter, tray rack, and tray, basket for nematodes extraction for soil and roots samples

Fiji Leaf Gall Disease

 Adopt an improved method for testing resistance to Fiji leaf gall disease through molecular technology.

Cane Grubs

- Compare the number of larvae and beetles caught during the months and confirm its life cycle.
- Deep ploughing of the soil to expose the larvae to their predators such as birds.
- Avoid having too many ratoons where fields are highly infested.
- More research to be done on biological control of Cane grubs.
- Flooding of the fields. This would lead to killing of the eggs as well as the larvae.
- While carrying out agronomy practices such as tillage as a control, if population of grubs are less, hand picking and elimination can be done immediately.
- Light trapping to become a part of the cane grub program.
- Develop sex pheromone to disrupt and prevent mating and breeding of cane grubs.

Project details

Nematology - Plant parasitic nematodes

A survey was conducted in Penang mill districts on 4 sectors (Nanuku, Malau, Ellington1 and Ellington2) to determine the occurrence and population density of plant-parasitic nematodes on sugarcane in October 2015.

A total of 40 soil samples were collected and analyzed, ten samples from each sectors (from ten different active cane growing farms). Ten samples from each sector were taken out. Ten nematode genera were identified and counted.

The most common plant parasitic nematodes found in Fiji's sugarcane fields are; Lesion, Reniform, Spiral, Ring, Dagger, Stubby, Stunt, Root knot, Lance and Pin. The table 1 shows the level of nematode occurrence in 40 farms in Penang mill regions.

Table 1: Nemato	Table 1: Nematodes found in 40 sugarcane fields in Penang district (Survey Area 1)									
	Nematodes	Nematodes/200ml of soil								
Common name	Species	Incidence (%)	Mean	Maximum						
Lesion	Pratylenchus spp	11.7	50.9	2035						
Spiral	Helicotylenchuc spp	55.6	248.8	9705						
Ring	Criconemella spp	4.4	19.1	764						
Dagger	Xiphinema spp	0.3	0.6	15						
Stubby root	Trichodorus spp	2.0	1.4	35						
Root knot	Meloidogyne spp	12.5	54.6	2185						
Stunt	Tylenchorhynchus spp	2.0	1.6	40						
Reniform	Rotylenchulus spp	42.1	19.1	764						
Lance	Hoplolaimus spp	2.0	10.4	355						
Pin	Paratylenchus spp	0.1	0.2	5						

Pathology - Screening of stage 3 clones

Fiji leaf gall is widespread in Fiji in the dominant commercial variety, Mana and in the garden cane, Duruka. Significant resources are devoted to managing the disease through rouging team and screening new varieties for resistance. FLG is caused by the virus and it is spread by infected planting material and by plant hoppers of the genus, Perkinsiella. In Fiji, the vector is Perkinsiella vitiensis. Leaf hopper (*Perkinsiella vitiensis*) survey is carried out every year in Fiji, in Lautoka mill area in Viti Levu.

This survey is done to observe that the population of hoppers can be found in each sector, so that hoppers can be collected and breed for Fiji Leaf Gall Screen. The resistance screening of the new clones were commenced in March with hopper survey and hopper collection from the commercial cane field. The insect that were collected from the field was bred on infected Fiji 10 (*Erianthus maximus*) for the nymphs. The 89 tested clones and 10 standards were inoculated with the Fiji disease virus and assessed.

Before taking out the plant from the insectary, the insecticide (Permethrin/ Improthrin) was used to kill all the infected nymphs. The assessment was done in a hundred days. The results in Table 2 and 3 shows the susceptibility of the 89 clones screened for Fiji Leaf gall disease of which 79% were resistant, 13% intermediate and 18%.

Table 2: Showing the disease rating of LF2012 series										
Clones	Clones Rating	Clones	Clones Rating	Clones	Clones Rating	Clones	Clones Rating			
LF12-1	1	LF12-65	3	LF12-140	1	LF12-257	4			
LF12-2	1	LF12-67	1	LF12-141	4	LF12-266	3			
LF12-3	1	LF12-73	3	LF12-143	1	LF12-267	1			
LF12-4	1	LF12-74	5	LF12-148	1	LF12-274	7			
LF12-6	1	LF12-76	1	LF12-153	2	LF12-276	1			
LF12-7	1	LF12-79	1	LF12-154	3	LF12-278	3			
LF12-11	1	LF12-85	3	LF12-156	1	LF12-280	1			
LF12-14	1	LF12-87	3	LF12-168	4	LF12-282	1			
LF12-15	1	LF12-88	1	LF12-169	1	LF12-286	6			
LF12-22	1	LF12-90	1	LF12-171	1	LF12-289	1			
LF12-28	1	LF12-94	1	LF12-173	1	LF12-521	1			
LF12-31	1	LF12-97	3	LF12-185	1	LF12-596	1			
LF12-33	1	LF12-103	1	LF12-189	4	LF12-618	4			
LF12-34	5	LF12-109	2	LF12-195	1	LF12-629	1			
LF12-35	6	LF12-112	6	LF12-205	7	LF12-682	1			
LF12-36	1	LF12-114	1	LF12-207	3	LF12-692	1			
LF12-39	8	LF12-117	1	LF12-211	1	LF12-700	7			
LF12-40	1	LF12-119	1	LF12-212	2	LF12-729	5			
LF12-49	3	LF12-120	1	LF12-219	1	LF12-732	7			
LF12-58	1	LF12-124	1	LF12-233	9	LF12-733	1			
LF12-60	1	LF12-134	1	LF12-253	1	LF12-766	9			
LF12-63	1	LF12-138	1	LF12-255	1	LF12-768	1			
LF12-793	4									

Table 3: Number	of varieties of the LF201	2 series at	
Series	Resistant	Moderate	Susceptible
LF 2012	79	13	8

Disease control

The system used in the protection of crops against diseases and pests remains the same as that of previous years. The disease control unit is involved in intensive rouging programme to eradicate all traces of Fiji disease from commercial fields.

The roguing of disease fields and intensive checking of all farms within a mile radius of the known diseased fields was continued this year. However the disease remains endemic in wild canes and *Saccharum edule* (Duruka) in the neighboring commercial farms and transmitted to the cultivated crop by the Fijian sugarcane leaf hopper, *Perkensiella vitiensis*.

A total area of 4,581.50 ha was inspected in 2015 Of which 906.39 ha plant crop and 3675.11ha were ration cane.

Table	Table 4: Monthly roguing figures from January-December 2015											
	Laut	autoka		ndi	Laba	sa	Sigat	toka	Ba/Ta	vua	Penang	
Months	Plant	Ratoon	Plant	Ratoon	Plant	Ratoon	Plant	Ratoon	Plant	Ratoon	Plant	Ratoon
Jan Feb	14.7 12.1	56.6 66.0	13.7 1.5	74.5 85.9	82.3 102.5	171.3 225.3	10.2 13.0	40.4 55.4				
Mar		82.7	5.2	160.6	155.0	156.0	10.8	61.2	2.9	67.3		

Table	4: Co	nt′d										
	Lau	toka	Na	idi	Labasa		Siga	toka	Ba/Tavua		Penang	
Months	Plant	Ratoon	Plant	Ratoon	Plant	Plant Ratoon		Ratoon	Plant	Ratoon	Plant	Ratoon
Apr		93.5		99.8	117.5	197.5	6.1	77.0				
May			3.6	88.2			10.0	51.5				
Jun		58.9	0.3	54.4			18.0	49.1	12.1	59.1		
Jul		136.1			132.5	118.6						
Aug		130.2			34.0	255.5	35.5	37.9	17.3	58.2		
Sept	2.8	120.4			7.3	117.5	18.4	62.8				
Oct					11.0	10.8	7.1	35.5				
Nov		5.5			47.2	316.3						
Dec	1.7	53.1								85.0		
Total	31.4	803.1	24.3	563.3	689.31	1568.71	129.1	470.5	32.3	269.6		

The trend on which Fiji Leaf Gall Disease is increasing in the sugarcane farms is an indication that the disease can flare up at any time given the availability of the pathogen, the transmission agent, *Perkensiella vitiensis*, weather conditions and planting of only one major variety, Mana. Mana was the only variety that was infected with FLG in all the cane districts except for Labasa and Penang. Also the planting of *Saccharum edule* (Duruka), an alternate host of Fiji Leaf Gall Disease planted along and near cane fields contributes to the increasing number of the disease found in some Districts.

Table 5: Summarized Rouging Report from January-December 2015									
Mill District	No. of Farms	Area Roug	ed (Ha)	No. of FLGD stools					
	Inspected	Plant	Ratoon	Rouged					
Lautoka	354	31.4	803.1	29					
Nadi	185	24.3	563.3	32					
Labasa	612	689.3	1568.7	0					
Sigatoka	224	129.1	470.5	376					
Ba/Tavua	139	32.3	269.6	45					
Penang	0	1.23	4.0	0					
Total	1490	892.94	3622.58	482					

Cane Grub

Cane grub in Fiji is an emerging pest in sugarcane crop. It has been generally identified as *Rhophea sp.* It has a life cycle of one to two years. It is "C" shaped, white with a greyish black abdomen. It has a sclerotized head and three pairs of legs. Cane grubs have three instars out of which the third one causes the most problems. The cane grub feeds and clings on the roots of the sugarcane crop. The infested fields display dry cane patches as well as yellowing of leaves. The affected plant roots turn black, the spindle wilts. The affected clumps are easily pulled out. A survey is still currently being carried out to find out the number of infested fields. Drasa sector seemed to be the most infected. The cane grubs were collected from the fields by using active method. According to the symptoms, the fields were diagnosed for the presence of cane grubs. Fields were searched for all developmental stages of cane grubs in soils, around cane roots and soils removed from the pit. Numbers of larvae, pupae and adults collected per pit were recorded. Larvae and pupae were transferred, singly, into labeled rearing vials containing moistened peat. Cane grub samples were sent to MSIRI for identification whereas the rest of it was being reared in the lab for multiplication. Rearing of the grub larvae was done by placing them with few stools with roots in a container with soil from the field where the grub was found with moistened peat moss. Rearing of the grubs was

done for further studies such as that of entomopathogen.Light trapping during the swarming period of *Rhophea sp.* would enable to precise the life cycle and to capture the adult grub beetles as these beetles are attracted to light. Light trapping will act as a control method for the adults and the collected grub beetles would be sent abroad for identification to confirm its species and this once more will be reared for additional studies.

Figure 2: Third instar of cane grub in the field

Figure 3: Close view of third instar larvae of cane grub.

Figure 4: Damage caused by cane grub infestation

Figure 5: "Patchy" effects of cane grub infestation

List of sectors visited

Table 7: Saw	veni Secto	pr				
Location	Farm No.	Name	Infestation	Variety	Crop Type	Larvae Count
Vuda	613	Harun Ali Shah	No	Mana	Ratoon	0
Lomolomo	711	Estate of Abram	No	Mana	Plant	0
Lomolomo	708	Minakshi	No	mana	Ratoon	0
Lomolomo	707	Ganga Reddy	No	Mana	Ratoon	0
Saweni	9410	Mukesh Chand	No	Mana	Ratoon	0
Saweni	566	Mohammad Yasuf	No	Mana	Ratoon	0
Saweni	18340	Est of Vijay Nand/ Krishnan Niraj Sharma	No	Mana	Ratoon	0
Saweni	579	Est of Kapil Prasad	No	Mana	Ratoon	0
Saweni	1320	Est of Jamilan Bi	No	Mana	Ratoon	0
Saweni	18358	Est of Daventi	No	Mana	Ratoon	0
Table 8: Lov	u Sector					
Location	Farm No.	Name	Infestation	Variety	Crop Type	Larvae Count
Buabua	199	Raj Pal	Yes	Mana	Ratoon	8
Qalitu Rd	169	Karna Karan	No	Mana	Ratoon	0
Qalitu Rd	19062	Jiten Singh	No	Mana	Ratoon	0
Qalitu Rd	22020	Ratesh	No	Mana	Ratoon	0
Qalitu Rd	1199	Est of Vidya Wati	No	Mana	Ratoon	0
Qalitu Rd	22086	Bhiren Wati	Yes	Mana	Ratoon	4
Naikabula	1188	Est of Ram Narayan	No	Mana	Ratoon	0
Buabua	22039	Ravin Kumar	No	Mana	Ratoon	0
Qalitu Rd	22086	Beran Wati	Yes	Mana	Ratoon	3
Table 9: Lau	toka Sect	or				
Location		Name	Infestation	Variety	Crop Type	Larvae Count
Vaivai	2402	29 Anil Chand	No	Mana I	Ratoon/Plant	0
Vaivai		19 Est of Atish Chand	No	Mana	Ratoon	0
Vaivai	2407		No	Mana	Ratoon	0
Vaivai	1303		No	Mana	Ratoon	0
Vaivai	2405		No	Mana	Ratoon	0
			No			0
Bandrama	2404	13 Rajendra Prasad	No	Mana	Ratoon	

Table 10: Drasa Sector

LOCATION	Farm No	Name	Infestation	Variety	Crop Type	Larvae Count
Cuvu	852	4 Suriya deep Singh	No	Mana	Ratoon	0
Tavarau	1806	9 Vishwa Nand	No	Mana	Ratoon	0
Tavarau	828	0 Est of Deo Narayan	No	Mana	Ratoon	0
Lomolomo	10	6 Manjula Devi	No	Mana	Ratoon	0
Lomolomo	1409	4 Mognam Bal	No	Mana	Ratoon	0
_omolomo	1407	0 Bal Bir Singh	No	Mana	Ratoon	0
_omolomo	1406	4 Est of Subarmani	No	Mana	Ratoon	0
omolomo	1406	3 Rayesh Chand	No	Mana	Ratoon	C
omolomo	1412	4 Bal Ram	No	Mana	Ratoon	C
_omolomo	11	0 Sumintra Devi	No	Mana	Ratoon	C
omolomo	1888	8 Venu Gopal Naidu	No	Mana	Ratoon	C
omolomo		6 Est of Suruj Narayan	No	Mana	Ratoon	(
Drasa Sector		2 SRIF	No	Mana, Qamea, Kuiva	Ratoon/Plant	C
omolomo	1410	3 Uday Singh	No	Mana	Ratoon	(
omolomo		8 Subhash Chand	No	Mana	Ratoon	(
omolomo	1400	0 Est of Ram Nand	No	Mana	Ratoon	(
omolomo	1409	3 Ronald Rohit Singh	No	Mana	Ratoon	(
omolomo		2 Wardha Reddy	No	Mana	Ratoon	C
omolomo		1 Anil	Yes	Mana	Ratoon	17
omolomo		7 Est of Hari Ram Daven	Yes	Mana	Ratoon	2
Table 11: Mal	au Sector					
Location	Farm No.	Name		Infestation Variety	Crop Type	Larvae Count
Malau	1	Ram Kumar	ſ	No Mana	Ratoon	0
Malau	1353	Est of Dhanbhagyam	ſ	No Mana	Ratoon/ Plant	0
Malau	1349	Ragwal Naidu	1		Ratoon/ Plant	0
Malau	233	Est of Ram Dass		No Mana	Ratoon	0
Malau	11196	Bisun Lal		No Mana	Ratoon	0
Malau	275	Poona Balam		No Kiuva	Ratoon	0

Location	Farm No.	Name	Infestation	Variety	Crop Type	Larvae Count
Masimasi	14617	Est Ram Daiyal	No	Mana	Ratoon	0
Nadele	9608	Vishnu Deo	No	Mana	Ratoon	0
Nadele	14613	Yad Ram Singh	No	Mana	Ratoon	0

CROP PRODUCTION

CROP PRODUCTION

The Sugar Industry Strategic Action Plan highlighted the need to get more support out to growers through the designation of five different groups and one of the groups is the Crop production and Grower Advisory that was mandated to set-up demonstration plots in each mill area. The demonstration plots focus on the technology transfer program that incorporates Weed Control, Use of Clean Seed, Adoption of Sugar Cane Varieties, Recommended rates of Fertiliser usage and Intercropping and provides the opportunity to the farmers to adopt practices that will help in improving their production, acquire additional revenue and provide food security.

Technology Transfer

Field days were held in the demonstration plots that highlighted the objective of the technology transfer program which is to disseminate information to the farmers that will be useful in improving their productivity. All the stakeholder representatives were invited to address the growers and emphasized that field days are one of the initiatives through which a larger number of growers can be reached and the collective message of all industry stakeholders can be conveyed to the growers.

Grower Demonstration Trials

Demonstration on the following topics were covered during the field days

- 1. Land preparation
- 2. Quality seed cane
- 3. Promote varietal spread
- 4. Mechanical planting with single row cutter planter that could also apply blend A (basal phosphorous) and lime simultaneously.
- 5. Spraying of pre-emergence weedicide with a knapsack using different nozzles that is designed for different modes of spraying band application to just cover the width of the furrow and broadcast application that covers the width of the furrow and inter row.
- 6. Mechanical spraying using a boom sprayer
- 7. Timeliness of operations

Figure 1: Broadcast application of lime

Figure 2: Lautoka Mill General Manager addressing growers

Figure 3: Growers listen to deliberations

Figure 4: Cleaning seedcane for mechanical planting

Figure 5: Mechanical planting with Blend A and Lime application

Figure 6: Pre-emergence application.

Grower Demonstration Trials

The table below summaries the grower demonstration trials that were carried out in 2015. In summary:

• 18 Trials Conducted

• 670 growers attended the demonstration trial field days

Table	Table 1: Summary of GD trials in 2015 and relevant activities									
No	Location/Sector	District	topics	Theme/attendance						
1	Estate of Mahmood Khan's farm at	Sigatoka/ Cuvu sector	Land preparation, seedcane quality, Blend A application,	launching of planting & varietal spread						
	Waiqaliqali, Cuvu Sector	24/04/2015	Pre-emergence application, Varietal spread	15 growers attended						
2	Estate of Sundressan's farm at Raviravi	Lautoka/ Drasa sector	Land preparation, seedcane quality, Blend A application,	launching of planting & varietal spread						
		22/04/2015	Pre-emergence application, Varietal spread	25 growers attended						
3	Anand's Farm -	Rarawai/Veis aru	Land preparation, seedcane quality, Blend A application,	launching of planting & varietal spread						
		02/04/2015	Pre-emergence application, Varietal spread	26 growers attended						
4	Suresh Chandras farm (16156) at Vunicuicui	Labasa/ Vunimoli	Land preparation, seedcane quality, Blend A application,	launching of planting & varietal spread						
		30/04/2015	Pre-emergence application, Varietal spread	56 growers attended						

Page 58 CROP PRODUCTION

Table	e 1: Cont'd			
No	Location/Sector	District	topics	Theme/attendance
5	Anand's Farm Tuva Point • Demonstration	Sigatoka/ Lomawai	Land preparation, seedcane quality, Blend A application,	launching of planting & varietal spread
	plot of QAMEA Biren Gosai's Farm • Launching of planting	01/04/2015	Pre-emergence application, Varietal spread	25 growers attended
6	Gopal Krishna's	Nadi/ Qeleloa	Land preparation, seedcane quality, Blend A application,	launching of planting & varietal spread
		27/04/2015	Pre-emergence application, Varietal spread	34 growers attended
7	Nurul Hak Farm No. 6722	Rarawai/ Naloto	Land preparation, seedcane quality,	Result demonstration
		17/04/2015	Blend A application, Pre-emergence application, Varietal spread	38 growers attended
8	Mukesh Chands farm	Rarawai/Mota	Land preparation, seedcane quality,	launching of planting & varietal spread
		05/05/2015	Blend A application, Pre-emergence application, Varietal spread	23 growers attended
9	Anil Kumar &	Rarawai/	Land preparation,	launching of planting
	Rohit Kumar Farm No. 6120	Koronubu	seedcane quality, Blend A application,	& varietal spread
	& 6123	04/05/2015	Pre-emergence application, Varietal spread	result demonstration 21 growers attended
10	Legalega Research Station	Legalega	Land preparation, seedcane quality,	Mechanical planting and spraying
	Farm no. 2097	14/05/2015	Blend A application, Pre-emergence application, Varietal spread	37 growers attended
11	Amir Ali's farm Farm no. 8730	Varoko	Land preparation, seedcane quality,	Result demonstration
		25/05/2015	Blend A application, Pre-emergence application, Varietal spread	24 growers attended
12	Yenktaiyas farm Farm no 914	Nanuku 11/06/2015	Land preparation, seedcane quality,	Result demonstration
			Blend A application, Pre-emergence application, Varietal spread Inter-cropping	19 growers attended
13	Nemani Soli Farm no. 1606	Malau 10/06/2015	Land preparation, seedcane quality,	Varietal established
			Blend A application, Pre-emergence application, Varietal spread	31 growers attended
14	Gaj Raj Farm no. 14107	Ellington 2 9/06/2015	Land preparation, seedcane quality,	Good establishment
			Blend A application, Pre-emergence application, Varietal spread Inter-cropping	33 growers attended

15	Rohit Kumar Farm no. 4202	Yaladro 3/06/2015	Land preparation, seedcane quality, Blend A application, Pre-emergence application, Varietal spread Inter-cropping	Result demonstration 27 growers attended
16	Legalega Research Station	Legalega	Mechanical planting of pulses as an inter-crop	Mechanical planting of pulses
. –	Farm no. 2097	06/07/2015		40 growers attended
17	Legalega Research Station	Legalega	Intercropping results Mechanical planting of pulses	Result demonstration of intercrops
	Farm no. 2097	29/09/2015	as an inter-crop Good land preparation Planting Pre emergence application	110 growers attended
18	Nawaicoba Farm no. 10659	Nawaicoba 29/10/2015	Intercropping in the ratoon cane an opportunity to improve total farm productivity	Result demonstration of intercrops 86 growers attended

Seed Cane Production

Introduction

Profitable crop production partly depends on the quality of the seed planted. This principle applies to sugarcane as much as to any other crop. The potential cane yield that should be obtained will not be achieved if seed cane of poor quality is planted.

Ratoon stunting disease (*Leifsonia xyli* subsp. *xyli*) is prevalent in Fiji (Johnson et al, 2006) and can cause loss up to 27% in cane yield annually (Johnson and Tyagi, 2010). This major disease can be cured by hot water treatment. Other minor diseases are also cured by heat treatment. Good germination that is quick and even gives rise to increased production. With a well maintained seed cane nursery, the grower is certain that the seed cane quality received from such a program is free from disease, varietal purity and has a good germination capacity.

Adoption of heat treated seed cane nurseries by growers will promote the efficient and sustainable agricultural practices that protect, sustain, and enhance water and soil resources and ultimately achieve greater harmony between agriculture and environment. The seed cane produced from these nurseries should increase sugar yield by 5 to 10 %. Coupled with new varieties developed at SRIF, this would assist in achieving the required sugar yield.

Since 2010, the uptake of seed cane by farmers from SRIF administered seed beds has been increasing slowly but surely and this is an opportunity to probe further with more marketing to be done to farmers through the use of Technology Transfer.

In Labasa the prolonged drought experienced affected the adoption the planting of sugarcane in both the Labasa and Seqaqa districts. The seed cane which was propagated for 2015 planting seasons exceeded the maturity age and had to be sent to the mill for crushing. Similar case was experienced in the October planting season. For early window planting of 2016, about 200 tonnes of seed cane will be available. This is due to the drought and lack of irrigation which hindered the seed cane planting in 2015. Adoption rate for new variety Qamea was promising in 2015 compared to Viwa. An estimate of 30 to 40 hectares was planted with this new variety.

Page 60 CROP PRODUCTION

As the weather was not favorable for the (March – April) planting season in 2015, the available seed cane at SRIF Labasa estate was harvested and sent to the mill. Total of 751 tonnes of cane was sent to the mill for crushing which passed the age of 7 - 9 months and was not of good quality seed cane for planting. Around 35 tonnes of Qamea/ Viwa was sold to farmers during Oct – Nov planting window. Farmers took around 10 tonnes of Ragnar seed cane. Thirty five tonnes of seed cane (Viwa/ Qamea) was used for planting. About 6 tonnes of seed cane (Qamea) was used to plant demonstration plots at 4 different locations. Also 30 tonnes of seed cane (Qamea and Viwa) was given to the farmers for free from Oct – Nov (2014) to Mar – April (2015) planting window for variety promotion. For, (March – April) planting window in 2016, about 4 ha of seed cane will be ready for distribution to the farmers.

Five ha of hot water treated seed nursery was established as Mother Plot in Drasa. The plot was irrigated due to the meteorological drought experienced. The germination was more than 90% because these seedlings were raised in the greenhouse then transferred to the field in the Drasa Estate. The varieties planted in the Mother plot were selected on the demand of these variety types from farmers. Seed cane from this nursery would be ready for planting in the 2016 planting season.

Figure 7: Irrigation in the greenhouse on seedlings

Figure 8: New variety, Viwa in the greenhouse

Challenges identified in Seed cane production are:

- Availability of land on the Estates. A minimum of 15ha is required for Labasa and Rarawai Estate each to cater for seed cane production
- Lack of farmer uptake of clean seed cane. Uptake of seed cane this year has been low due to the drought conditions faced and also the lack of awareness on the advantage of using quality seed cane by farmers.

Recommendation

It is recommended that demonstration plots are planted on farmer's field using heat treated or clean seed material.

EU SUPPORT

EUROPEAN UNION SUPPORT TO THE SUGAR RESEARCH INSTITUTE OF FIJI

The support for the research activities is available through the **Accompanying Measures** for the Sugar Protocol Programme (AMSP Programme). The Sugar Protocol was the agreement that sets the guaranteed import prices and import levels for sugar between ACP countries that signed up to it and the European Union. Following a ruling of the WTO, which put an end to guaranteed prices for the EU's own producers, the EU could not justify paying guaranteed prices for ACP producers when we no longer guarantee prices for its own producers. The decision was taken in 2009 to terminate the Sugar Protocol after a transition period that will come to an end in October 2017. The AMSP programme was designed to help ACP countries adapting to the foreseen EU market access conditions over the Protocol phasing out period (2009-2017). In this framework, Fiji has received nearly 50 million euros to help the sugar producers improve competitiveness and diversify their sources of income, through the implementation of 14 projects. The duration of these projects varies; the longest ones will end in 2018. The Sugar Research Institute of Fiji has benefitted significantly from the support of European Union through the Annual Action Programs (AAP) 2011-2013. The total of € 3.5M has been made available to SRIF from 2012 to 2018 in the form of AAP2011, AAP2012 and AAP2013.

Annual Action Program 2011

Title: 'Cane variety research is improved and good quality seed cane is available to growers' **Budget:** € 1 Million

Implementation Period: August 2012- December 2015

AAP2011 focused on two key result areas: (a) Strengthening Research and (b) Capacity Building. Strengthening research concentrated on targeted inputs in various areas of sugarcane research, production of seed cane and improved estate and infrastructure to assist in the production of new varieties and multiplication of seed cane. **Capacity building** focused on staff training and education to increase their research capabilities. Most activities planned in the original Grant contract were completed except purchase and installation of an ecofriendly hot water treatment unit and set-up of irrigation and reticulation system for Drasa estate. An addendum was sought to change the eco-friendly hot water treatment unit into two biogas operated HWT units and two greenhouses to be located at Rakiraki and Labasa. The unspent budget lines were diverted to include the purchase of lowboy truck and equipment's for bio-compost. The initial implementation period of AAP2011 was 24 months from 13th August 2012 but due the delays in completing project activities, this was extended twice with the final implementation period being 40 months to end of December 2015. Despite the extensions, the activities which were identified in the second addendum were not completed at the end of the project. This was due to lack of justification and utilisation plan for the proposed investments. As a result of this failure, SRIF lost a total of \in 345,000. Notwithstanding the above, most of the activities were completed as planned and the desired outcome was achieved for most of them. The specific objective of the action was 'Cane variety research is strengthened and good quality seed cane is available to growers'. Improving and introducing new varieties with increased yield and sucrose content is the ultimate aim of any sugarcane research programme and requires long term vision, resource input and dedicated personnel. The sugarcane breeding programme at SRIF has been in existence for decades and had its basis in making large number of random combinations to increase the chances of producing a superior cultivar. Although effective, this method has long been set aside in favour of modern methods of using available molecular tools and statistical programs to identify superior parents more likely to pass on their favourable attributes to their offspring to make limited but highly productive crosses. The transition from a conventional to more modern approach to breeding requires appropriate adjustments in terms of infrastructure, germplasm material and staff training. The investments under the AAP2011 Grant helped to

fast-track these changes, with the introduction of new varieties, staff training and purchase of necessary equipment. This has resulted in an improved sugarcane breeding programme capable of producing cultivars which are superior to the existing ones in all aspects. The AAP2011 funding enabled SRIF staff to access formal education at local and overseas universities, with training and attachments undertaken at sugarcane research institutes in Australia, Mauritius and Thailand. SRIF staff have benefitted though upgrading their qualifications and further developing their research capacities and improved skills. Attendance at conferences and workshops has helped staff to build professional networks with other scientists in their fields, get research ideas and increase confidence.

Table 1 : List	Table 1 : List of staff who enrolled for formal studies under AAP2011									
Staff	Qualification before project	Qualification after project	Status	Anticipated Finish Date						
Mumta Gounder	Diploma in Laboratory Technology	Bachelor in Chemistry	10/24 units	2017						
Nalini Prasad	Diploma in Agriculture	Bachelor in Agriculture	Completed							
Natasha Nair	Diploma in Business Management	Bachelors in Management	8/10 units	2016						
Saimone Johnson	Masters in Biology	Master's in Business Administration	Completed							
Sanjay Prakash	Diploma in Accounting	Master's in Business Administration	Completed							
Jyotika Prasad	Bachelor of science in Biotech, Chemistry and Genetics	Postgrad Diploma in Biology	Completed							
Nazeea Bano	Bachelor of Science in Chemistry and Biology	Unclassified	3/6 units							
Pedro Rounds	Bachelor of Science in Biology and Computer Science	Unclassified	1/4 units							
Ilisoni Vorelevu	Bachelors in Agriculture	Masters in Botany	Completed							
Mere Tauvoli	Bachelor of Science in Chemistry and Biology	Masters in Chemistry	Completed							
Doreen Pillay	Bachelor of Science in Environmental Science (Chemistry)	Masters in Chemistry	Completed							

Table 2: Staff attendance to workshop and seminars							
Conference/Workshop	Staff						
ASPAC Workshop New Zeeland	Milika Vaniqi						
ASPAC Workshop, New Zealand	Mumta Gounder						
ASSCT Workshop, Townsville	Jyotika Prasad						
	Doreen Pillay						
ISSCT, Brazil	Amit Singh						
	Sanjay Prakash						
Step Up conference. Gold Coast	Saimone Johnson						
	Nazeea Bano						
	Sanmogam Gounder						

SRIF benefitted through an upgrade in its equipment and infrastructure. Training activities and interactions with other research institutes resulted in the development new project ideas and collaboration at an institutional level in fields such as breeding, molecular biology and

agronomy. This has also resulted in access to resources such as primer sequences and laboratory protocols which otherwise would not be available to SRIF.

The ultimate beneficiaries of this project are the sugar cane farmers. The short-term benefit to these farmers has been ensuring that their crops remain free from pest and diseases. The use of pheromone traps in the cane belt have kept the spread of cane weevil borer in check and the use of molecular diagnostics has helped in rapid identification and elimination of any bacterial and viral diseases. One of the long-term benefits anticipated was the availability of sufficient amounts of clean seed cane for farmers. This could not be realised on a large scale due to the absence of distribution plots and only a small number of farmers benefitted from SRIFs primary nursery. The longer-term impact of the AAP2011 Grant will be the availability of new sugarcane varieties which have high yield and sucrose content.

Figure 1: Greenhouse constructed at Drasa for production of disease free sugarcane seedlings

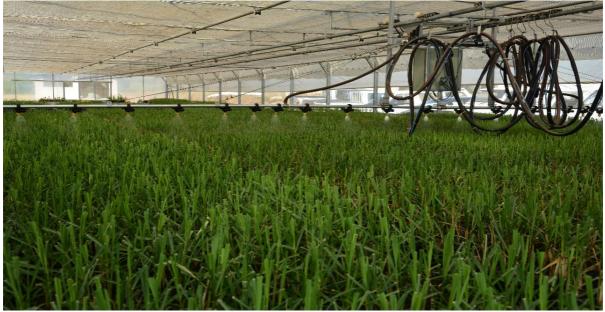


Figure 2: Seedling production at the Drasa greenhouse

Annual Action Program 2012

Title: Sugar research capacity building and improvement of cane production **Budget:** $\in 1$ Million

Implementation Period: December 2013-December 2016

The AAP2012 centers on increasing the overall cane production and improving the selffinancing and research capacities of the Institute. Building on the achievements of AAP2011, the infrastructure and disease testing facilities will be used to produce quality seed cane for distribution to the growers. There has been a rapid decline in production in the past decade and some of the contributing factors are the reluctance of growers to plant new cane after a ratooning period of 5-8 years and their dependence on a single cultivar. The approach to increasing the cane production is ensuring that there is sufficient quality of seed material available for the new and early maturing cultivars. The project also looks at setting up demonstration trials in every sector to show the benefits of quality seed material, planting legumes, and adopting new varieties of sugarcane. A total of 30 demonstrations trials have been conducted since 2015. The success of the above approach has been visible in terms of increase in number of growers interested in planting new varieties.

Figure 3: Participants at the stakeholder workshop conducted at the Tanoa Waterfront Hotel in October

Annual Action Program 2013

Title: Improvement of management and operation capacities of SRIF **Budget:** $\in 1.5$ Million

Implementation Period: December 2014-December 2018

AAP2013 will continue to focus on increasing the production through adoption of new varieties. The interim seed cane production programme under the AAP2012 will link seamlessly with the long-term seed cane production plan for the industry. The objective will be to reduce the total area covered by the current dominant variety 'Mana' and increase the area planted using new and early maturing varieties. In addition to this, research projects are being conducted to recommend alternative sources of fertilizer which will decrease the input cost for the growers; pest and disease management studies that will provide

recommendations on the cost-effective methods of producing a healthy crop and mechanization techniques which will help growers plant and maintain their farms.

The project also focuses on inclusion of services and activities which will generate income for the Institute. Changing political scenarios constantly affect the flow of funds available for research and this becomes an inhibitory factor in achieving the desired results. Starting income generating activities such as providing farm contracting services to the growers, providing soil and water testing services at a cost will ensure that SRIF does not have to be dependent on the funding by the industry stakeholders and there are funds available for research once the Grant Contract ends.

The project is on hold pending approval of the inception report.

ASIAN CARIBBEAN PACIFIC- SUGAR RESEARCH PROGRAMME (ACP-SRP)

Title: A comparative study of family and individual mass selection methods as early selection criteria and Nobilisation of Erianthus species.

Budget: €799,765.00

Implementation Period: December 2010-December 2015

The goal of this project was to increase sugar productivity per unit area by testing the efficiency of the family selection comparison with mass individual selection system and to undertake a nobilisation programme involving *E. arundinaceous* and *E. procerus* type clones with selected *S. officinarum*.

The project focused on four main objectives:

[1] Evaluate the efficiency of the methodology of the two early selection system that is family selection and individual mass selection where mechanical harvesting and weighing technique are not available.

The two trials planted to this effect were planted in April 2013 and February 2014 respectively. The 2013 trial is in Stage 2 now and was planted in July 2015 and the effect of the selection system would be seen after evaluation of the plant crop in 2016 season. For 2014 trial, the individual selection as been done and the selections are being propagated. The family selection will be carried out in ratoon in 2016 and a stage 2 trial will be planted. Both the trials involve families from West Indies whereas 2013 trial also have some SRIF crosses. SRIF will continue this trial and the results will be made available after the evaluation.

[2] To focus on the possibility of determining the breeding values of parental clones that produced the families using Best Linear Unbiased Predictors (BLUPs) of parental performance estimated from family selection trials. BLUPs are estimates of breeding value, which is the additive genetic component of the genotype.

It will take 5-8 years of repeated use of proven parents and families to ascertain the breeding values. The proven families would be those producing good progenies in terms of high sugar and cane yielding varieties. In 2015, the refresher course on ASRemI software which will use BLUP's to estimate the breeding values was undertaken in November. The SRIF staff are prepared to conduct necessary analysis as and when data becomes available.

[3] To undertake a germplasm collection programme where very little or no collections have been made so far such as Burma, Laos, Cambodia and Vietnam.

This had been initiated earlier in 2013 but it has not been possible to bring the collected materials to Fiji due to tough biosecurity conditions in case of Myanmar. However with respect to Vietnam it has been possible to sign a MoU and import 15 Erianthus and 5 S. officinarum varieties. Two of the Vietnam Erianthus have been used for crosses in 2015 season together with local Erianthus arundinaceous and preserved Indonesian collection.

[4] To select five to ten *S. officinarum* clones and make crosses with six *E. arundinaceous* and four *E. procerus* to develop an array of genotype with bloodline from genu *Erianthus*. These genotypes are to have minimum characteristics for the other traits of agronomic importance for further breeding and commercial acceptability. The normal time span for release of varieties is beyond the scope of this operation however it would lay the foundation for the parental line development.

In 2015, 29 crosses had been conducted of which 2 were with the officinarum. The fuzz (seeds) have not been sown yet.

The project also had provision for improvement of the infrastructure required for sugarcane breeding and some of the infrastructure development include:

- Construction of the crossing shed at Dobuilevu, Rakiraki
- Purchase of germination chamber for sugarcane breeding
- Purchase of SpectraCane for analysis of sugarcane samples
- Purchase of PCR and other equipment to set up the molecular diagnostics lab
- Purchase of farm implements and irrigation equipment

In addition to the infrastructure development; staff received training in various aspects of sugarcane breeding. Some of the training and attachments carried out in collaboration with other research institutes include:

- Training in sugarcane breeding at Sugar Research Australia (SRA -previously BSES)
- Training in Sugarcane breeding at West Indies Sugarcane Breeding Station (WISCBS)
- Training in statistics at SRA
- Training in DNA extraction and PCR at Mauritius Sugarcane Breeding Station (MSIRI)

Figure 4: Biparental crosses set-up at the Breeding Facility in Dobuilevu

FACP APPENDICES

FACP APPENDICES

Appendix 1: Main features of 2015 season compared with 2014										
	Lau			awai		oasa	Pen	ang	All	mills
	2014	2015	2014	2015	2014	2015	2014	2015	2014	2015
Total registrations (Numbers)	5327	5388	5206	5268	4011	4017	1693	1714	16237	16387
Total farm basic allotments (tonnes)	923991	936592	929885	935815	891325	895990	255612	261552	3000813	2116040
Total registered area (hectares)	22569	22810	21767	21907	19459	18771	7711	7785	71505	985181
Total area cultivated (hectares)	11702	11516	14022	13062	13337	13245	5353	3883	44414	41705
Total area harvested (hectares)	11018	10882	11973	11849	12079	12972	3358	3588	38427	39291
Total farm harvest quotas (tonnes)	open	open								
Sugar make actual (tonnes)	71869	61463	66742	62570	67338	79797	20910	18103	226858	221933
Tonnes 94 N.T sugar	76456	63784	68277	61083	69647	82744	21684	18731	236065	226342
Yield tonnes 94 N.T.sugar per hectare	6.9	5.9	5.6	5.5	5.6	8.3	6.5	5.2	6.1	6.2
Tonnes cane per tonnes sugar 94 N.T.	7.7	8.2	8.3	8.1	8.1	8.5	8.3	9	8.1	8.4
%POCS	13	12.4	12	12.6	12	12.1	12	11.9	12	12.3
Cane purity average for season	83	83.4	82	82.9	84	83.3	81	81.7	83	82.8
Tonnes cane harvested	520264	521065	596350	490765	544353	662600	171214	170129	1832181	1844559
Tonnes cane crushed	554224	502327	553014	510322	544353	662600	180571	169317	1832162	1844566

Appendix	Appendix 2: Monthly rainfall(mm) for 2015 compared with long term average													
Mills	No. of years	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
Lautoka	2015 actual	212	342	130	64	10	9	27	35	43	19	2	82	974
	107 yrs avg. to 2015	308	323	321	183	98	65	51	68	74	90	126	189	1895
Rarawai	2015 actual	196	246	143	82	13	8	5	22	53	43	7	283	1101
	130 yrs avg. to 2015	357	358	360	284	80	38	29	95	103	144	220	238	2299
Labasa	2015 actual	185	404	175	105	59	2	0	82	36	7	27	86	1167
	127 yrs avg. to 2015	365	362	379	232	110	65	47	51	102	102	204	252	2271
Penang	2015 actual	150	364	143	102	72	15	5	53	59	124	28	196	1310
	118 yrs avg. to 2015	437	355	403	378	124	70	52	90	86	145	153	245	2535

Appendix 3: Crop p	roduction	details								
	Lau	toka	Rarawai		Labasa		Penang		All	nills
	2014	2015	2014	2015	2014	2015	2014	2015	2014	2015
Areas harvested (he	ctares)									
Plant	681	1006	803	1095	1035	1756	260	580	2780	4437
First ratoon	577	653	863	799	1700	1219	262	238	3401	2908
2nd ratoon	237	513	639	761	582	1573	127	232	1584	3079
Other ratoons	9523	8710	9667	9194	8762	8424	2709	2538	30662	28867
Total	11018	10882	11973	11849	12079	12972	3358	3588	38427	39291
Cane harvested		•								
Plant	40769	55820	49438	54325	60413	103332	15713	30250	166333	243727
First ratoon	33012	36231	51957	39760	97645	79412	14320	11995	196934	167398
2nd ratoon	12340	27064	34407	34170	28940	82683	6313	10812	82000	154729
Other ratoons	434143	401950	460548	362510	357355	397173	134868	117072	1386914	1278705
Total	520264	521065	596350	490765	544353	662600	171214	170129	1832181	1844559
Yield tonnes cane p	er hectare	(tch)								
Plant	60.0	55.5	62.0	49.6	58.0	58.9	60.0	52.2	60.0	54.9
First ratoon	53.0	55.5	60.0	49.8	57.0	65.2	55.0	50.3	58.0	57.6
2nd ratoon	52.0	52.7	54.0	44.9	50.0	52.6	50.0	46.7	52.0	50.3
Other ratoons	46.0	46.1	48.0	39.4	41.0	47.1	50.0	46.1	45.0	44.3
Avg. yield/ha	47.0	47.9	50.0	41.4	45.0	51.1	51.0	47.4	48.0	46.9
Varieties crushed (%	6 of total o	ane harves	sted)							
Ragnar	0.6	0.9	0.5	0.9	23.9	24.8	0.1	0.7	7.5	9.5
Aiwa	0.4	0.5	0.3	0.3	0.2	0.2	nil	0.1	0.3	0.3
Beqa	0.3	0.1	nil	nil	nil	0.1	0.1	nil	0.1	0.1
Galoa	0.1	0.2	nil	nil	6.2	5.5	nil	0.4	1.9	2.0
Kaba	2.3	2.7	5.0	6.2	0.4	0.4	0.3	0.9	2.6	2.6
Mali	0.1	nil	nil	1.1	10.3	12.2	0.1	0.1	3.1	4.7
Mana	91.8	90.5	90.9	88.9	nil	nil	95.4	90.1	64.3	57.5
Naidiri	1.7	2.1	0.9	1.2	33.8	31.7	3.4	6.5	11.2	12.9
Vatu	nil	0.1	0.0	nil	16.6	16.3	nil	0.2	4.9	5.9
Waya	nil	nil	0.4	0.3	6.7	6.8	0.1	0.4	2.1	2.6
LF91-1925	1.0	1.5	0.3	0.9	0.9	1.3	0.1	0.2	0.6	1.1
Kiuva	1.3	1.1	1.1	nil	0.8	0.5	0.3	0.3	1.0	0.5
Expt./Others	0.3	nil	nil	0.2	0.1	0.2	0.1	0.1	0.1	0.3
Total	100	100	100	100	100	100	100	100	100	100

Appendix 4	Appendix 4: Rainfall (mm) at mill centres											
Mill	Fo	r 12 months	s ended 31s	t December	For 12 months ended 30th September							
	2011	2012	2013	2014	2015	2011	2012	2013	2014	2015		
Lautoka	3115	3563	2438	1541	974	2422	3384	1570	1250	991		
Rarawai	2779	2640	2268	1250	1101	3029	2351	1469	1009	998		
Labasa	2814	2679	2752	1679	1167	3087	2322	2066	1134	1519		
Penang	3246	3000	2342	2179	1310	3335	2793	1850	1490	5452		

Appendix 5: Rainfall distribution affecting 2015 crop(mm)										
Month	Period	Lautoka	Rarawai	Labasa	Penang					
Jul-14	Early	nil	nil	3.5	3.6					
	Mid	0.8	nil	4.6	0.2					
	Late	0.5	nil	9.6	19.9					
Aug-14	Early	nil	nil	2.4	2.5					
	Mid	nil	nil	Nil	4.7					
	Late	nil	nil	Nil	9.0					
Sep-14	Early	nil	nil	Nil	Nil					
	Mid	nil	nil	Nil	Nil					

Oct-14 Early 20.1 14.0 45.4 16.7 Mid 6.4 5.2 76.1 31.0 Late 6.2 22.0 78.9 50.8 Nov-14 Early 31.3 42.4 46.7 21.4 Mid Nil Nil Nil 29.6 0.2 Late 55.1 8.7 40.0 43.2 Dec-14 Early 42.8 57.0 60.2 281.8 Mid 22.0 44.8 58.0 211.8 Late 71.4 35.5 35.8 25.9 Jan-15 Early 62.1 81.5 70.0 315.5 Mid 13.8.3 62.5 45.7 312.4 Late 12.9 52.1 68.8 350.6 Feb-15 Early 61.9 80.2 157.3 325.6 Mid 209.4 115.9 133.1 319.6 Late 67.0 50.0 113.						
Mid 6.4 5.2 76.1 31.0 Late 6.2 22.0 78.9 50.8 Nov-14 Early 31.3 42.4 46.7 21.4 Mid Nii Nii Nii 21.4 46.7 21.4 Late 55.1 8.7 40.0 43.2 20.2 281.8 Dec-14 Early 42.8 57.0 60.2 281.8 Mid 22.0 44.8 58.0 211.8 Late 71.4 35.5 35.8 25.9 Jan-15 Early 62.1 81.5 70.0 315.5 Mid 13.8.3 62.5 45.7 312.4 Late 12.9 52.1 68.8 350.6 Feb-15 Early 61.9 80.2 157.3 325.6 Mar-15 Early 54.8 35.0 5.5 33.7 Mid 73.1 107.8 162.5 100.1 Late		Late	17.1	5.8	5.8	0.4
Late 6.2 22.0 78.9 50.8 Nov-14 Early 31.3 42.4 46.7 21.4 Mid Nii Nii 29.6 0.2 Late 55.1 8.7 40.0 43.2 Dec-14 Early 42.8 57.0 60.2 281.8 Mid 22.0 44.8 58.0 211.8 Late 71.4 35.5 35.8 25.9 Jan-15 Early 62.1 81.5 70.0 315.5 Mid 13.8.3 62.5 45.7 312.4 Late 12.9 52.1 68.8 350.6 Feb-15 Early 61.9 80.2 157.3 325.6 Mid 209.4 115.9 133.1 319.6 Late 67.0 50.0 113.5 252.8 Mar-15 Early 54.8 35.0 5.5 33.7 Mid 73.1 107.8 162.5 <t< td=""><td>Oct-14</td><td>Early</td><td>20.1</td><td>14.0</td><td>45.4</td><td>16.7</td></t<>	Oct-14	Early	20.1	14.0	45.4	16.7
Nov-14 Early 31.3 42.4 46.7 21.4 Mid Nii Nii Nii 29.6 0.2 Late 55.1 8.7 40.0 43.2 Dec-14 Early 42.8 57.0 60.2 281.8 Mid 22.0 44.8 58.0 211.8 Late 71.4 35.5 35.8 25.9 Jan-15 Early 62.1 81.5 70.0 315.5 Mid 13.8.3 62.5 45.7 312.4 Late 12.9 52.1 68.8 350.6 Feb-15 Early 61.9 80.2 157.3 325.6 Mid 209.4 115.9 133.1 319.6 Late 67.0 50.0 113.5 252.8 Mar-15 Early 54.8 35.0 5.5 33.7 Mid 73.1 107.8 162.5 100.1 Late 5.9 Nii <td< td=""><td></td><td>Mid</td><td>6.4</td><td>5.2</td><td>76.1</td><td>31.0</td></td<>		Mid	6.4	5.2	76.1	31.0
Mid Nil Nil 29.6 0.2 Late 55.1 8.7 40.0 43.2 Dec-14 Early 42.8 57.0 60.2 281.8 Mid 22.0 44.8 58.0 211.8 Late 71.4 35.5 35.8 25.9 Jan-15 Early 62.1 81.5 70.0 315.5 Mid 13.8.3 62.5 45.7 312.4 Late 12.9 52.1 68.8 350.6 Feb-15 Early 61.9 80.2 157.3 325.6 Mid 209.4 115.9 133.1 319.6 Late 67.0 50.0 113.5 252.8 Mar-15 Early 54.8 35.0 5.5 33.7 Mid 73.1 107.8 162.5 100.1 Late 5.9 Nil 7.4 9.6 Apr-15 Early 0.7 Nil 7.9 43.		Late	6.2	22.0	78.9	50.8
Late 55.1 8.7 40.0 43.2 Dec-14 Early 42.8 57.0 60.2 281.8 Mid 22.0 44.8 58.0 211.8 Late 71.4 35.5 35.8 25.9 Jan-15 Early 62.1 81.5 70.0 315.5 Mid 13.8.3 62.5 45.7 312.4 Late 12.9 52.1 68.8 350.6 Feb-15 Early 61.9 80.2 157.3 325.6 Mid 209.4 115.9 133.1 319.6 Late 67.0 50.0 113.5 252.8 Mar-15 Early 54.8 35.0 5.5 33.7 Mid 73.1 107.8 162.5 100.1 Late 5.9 Nii 7.4 9.6 Apr-15 Early 0.7 Nii 7.9 43.9 Mid 60.9 81.9 84.8	Nov-14	Early	31.3	42.4	46.7	21.4
Dec-14 Early 42.8 57.0 60.2 281.8 Mid 22.0 44.8 58.0 211.8 Late 71.4 35.5 35.8 25.9 Jan-15 Early 62.1 81.5 70.0 315.5 Mid 13.8.3 62.5 45.7 312.4 Late 12.9 52.1 68.8 350.6 Feb-15 Early 61.9 80.2 157.3 325.6 Mid 209.4 115.9 133.1 319.6 Late 67.0 50.0 113.5 252.8 Mar-15 Early 54.8 35.0 5.5 33.7 Mid 73.1 107.8 162.5 100.1 Late 5.9 Nil 7.4 9.6 Apr-15 Early 0.7 Nil 7.9 43.9 Mid 60.9 81.9 84.8 57.5 Late 2.1 Nil 12.7 0		Mid	Nil	Nil	29.6	0.2
Mid 22.0 44.8 58.0 211.8 Late 71.4 35.5 35.8 25.9 Jan-15 Early 62.1 81.5 70.0 315.5 Mid 13.8.3 62.5 45.7 312.4 Late 12.9 52.1 68.8 350.6 Feb-15 Early 61.9 80.2 157.3 325.6 Mid 209.4 115.9 133.1 319.6 Late 67.0 50.0 113.5 252.8 Mar-15 Early 54.8 35.0 5.5 33.7 Mid 73.1 107.8 162.5 100.1 Late 5.9 Nii 7.4 9.6 Apr-15 Early 0.7 Nii 7.9 43.9 May-15 Early 0.7 Nii 7.9 43.9 Mid 60.9 81.9 84.8 57.5 Late 2.1 Nii 12.7 0.4 </td <td></td> <td>Late</td> <td>55.1</td> <td>8.7</td> <td>40.0</td> <td>43.2</td>		Late	55.1	8.7	40.0	43.2
Late 71.4 35.5 35.8 25.9 Jan-15 Early 62.1 81.5 70.0 315.5 Mid 13.8.3 62.5 45.7 312.4 Late 12.9 52.1 68.8 350.6 Feb-15 Early 61.9 80.2 157.3 325.6 Mid 209.4 115.9 133.1 319.6 Late 67.0 50.0 113.5 252.8 Mar-15 Early 54.8 35.0 5.5 33.7 Mid 73.1 107.8 162.5 100.1 Late 5.9 Nii 7.4 9.6 Apr-15 Early 0.7 Nii 7.9 43.9 Mid 60.9 81.9 84.8 57.5 Late 2.1 Nii 7.9 43.9 Mid 60.9 81.9 84.8 57.5 Late 2.1 Nii 12.7 0.4	Dec-14	Early	42.8	57.0	60.2	281.8
Jan-15 Early 62.1 81.5 70.0 315.5 Mid 13.8.3 62.5 45.7 312.4 Late 12.9 52.1 68.8 350.6 Feb-15 Early 61.9 80.2 157.3 325.6 Mid 209.4 115.9 133.1 319.6 Late 67.0 50.0 113.5 252.8 Mar-15 Early 54.8 35.0 5.5 33.7 Mid 73.1 107.8 162.5 100.1 Late 5.9 Nii 7.4 9.6 Apr-15 Early 0.7 Nii 7.9 43.9 Mid 60.9 81.9 84.8 57.5 Late 2.1 Nii 12.7 0.4 May-15 Early Nii Nii 13.0 Nii 1.3 Late 2.1 Nii 13.0 Nii 1.3 1.4 1.3 1.4 1.4		Mid	22.0	44.8	58.0	211.8
Mid 13.8.3 62.5 45.7 312.4 Late 12.9 52.1 68.8 350.6 Feb-15 Early 61.9 80.2 157.3 325.6 Mid 209.4 115.9 133.1 319.6 Late 67.0 50.0 113.5 252.8 Mar-15 Early 54.8 35.0 5.5 33.7 Mid 73.1 107.8 162.5 100.1 Late 5.9 Nil 7.4 9.6 Apr-15 Early 0.7 Nil 7.9 43.9 Mid 60.9 81.9 84.8 57.5 Late 2.1 Nil 7.9 43.9 May-15 Early 0.7 Nil 12.7 0.4 May-15 Early Nil Nil 13.0 13.3 May-15 Early Nil Nil 13.3 14.3 Jun-15 Early Nil Nil <td></td> <td>Late</td> <td>71.4</td> <td>35.5</td> <td>35.8</td> <td>25.9</td>		Late	71.4	35.5	35.8	25.9
Late 12.9 52.1 68.8 350.6 Feb-15 Early 61.9 80.2 157.3 325.6 Mid 209.4 115.9 133.1 319.6 Late 67.0 50.0 113.5 252.8 Mar-15 Early 54.8 35.0 5.5 33.7 Mid 73.1 107.8 162.5 100.1 Late 5.9 Nil 7.4 9.6 Apr-15 Early 0.7 Nil 7.9 43.9 Mid 60.9 81.9 84.8 57.5 Late 2.1 Nil 12.7 0.4 May-15 Early Nil Nil 13.0 Nil 1.3 Jun-15 Early Nil 13.0 Nil 1.3 Jun-15 Early Nil Nil 0.4 Jun-15 Early 11.8 7.8 Nil 0.4 Jun-15 Early 11.8	Jan-15	Early	62.1	81.5	70.0	315.5
Feb-15 Early 61.9 80.2 157.3 325.6 Mid 209.4 115.9 133.1 319.6 Late 67.0 50.0 113.5 252.8 Mar-15 Early 54.8 35.0 5.5 33.7 Mid 73.1 107.8 162.5 100.1 Late 5.9 Nil 7.4 9.6 Apr-15 Early 0.7 Nil 7.9 43.9 Mid 60.9 81.9 84.8 57.5 Mid 60.9 81.9 84.8 57.5 May-15 Early Nil Nil 12.7 0.4 May-15 Early Nil Nil 13.0 1.3 Jun-15 Early Nil Nil 0.4 Jun-15 Early 11.8 7.8 Nil 0.4 Mid Nil Nil Nil 2.0 3.1 Late 3.5 Nil <		Mid	13.8.3	62.5	45.7	312.4
Mid 209.4 115.9 133.1 319.6 Late 67.0 50.0 113.5 252.8 Mar-15 Early 54.8 35.0 5.5 33.7 Mid 73.1 107.8 162.5 100.1 Late 5.9 Nil 7.4 9.6 Apr-15 Early 0.7 Nil 7.9 43.9 Mid 60.9 81.9 84.8 57.5 Mid 60.9 81.9 84.8 57.5 Late 2.1 Nil 12.7 0.4 May-15 Early Nil Nil 58.9 70.5 Mid 4.4 13.0 Nil 1.3 1.3 Jun-15 Early 11.8 7.8 Nil 0.4 Mid Nil Nil Nil 2.0 3.1 Jun-15 Early 11.8 7.8 Nil 2.4 Mid Nil Nil Nil		Late	12.9	52.1	68.8	350.6
Late 67.0 50.0 113.5 252.8 Mar-15 Early 54.8 35.0 5.5 33.7 Mid 73.1 107.8 162.5 100.1 Late 5.9 Nil 7.4 9.6 Apr-15 Early 0.7 Nil 7.9 43.9 Mid 60.9 81.9 84.8 57.5 Late 2.1 Nil 12.7 0.4 May-15 Early Nil Nil 58.9 70.5 Mid 4.4 13.0 Nil 1.3 1.3 Late Nil Nil Nil 0.4 Jun-15 Early 11.8 7.8 Nil 0.4 Jun-15 Early 11.8 7.8 Nil 2.4 Mid Nil Nil Nil 2.0 3.1 Late 3.5 Nil Nil 9.1	Feb-15	Early	61.9	80.2	157.3	325.6
Mar-15 Early 54.8 35.0 5.5 33.7 Mid 73.1 107.8 162.5 100.1 Late 5.9 Nil 7.4 9.6 Apr-15 Early 0.7 Nil 7.9 43.9 Mid 60.9 81.9 84.8 57.5 Late 2.1 Nil 12.7 0.4 May-15 Early Nil Nil 58.9 70.5 Mid 4.4 13.0 Nil 1.3 1.3 Jun-15 Early 11.8 7.8 Nil 0.4 Jun-15 Early 11.8 7.8 Nil 2.4 Mid Nil Nil Nil 2.0 3.1 Late 3.5 Nil Nil 2.0 3.1		Mid	209.4	115.9	133.1	319.6
Mid 73.1 107.8 162.5 100.1 Late 5.9 Nil 7.4 9.6 Apr-15 Early 0.7 Nil 7.9 43.9 Mid 60.9 81.9 84.8 57.5 Late 2.1 Nil 12.7 0.4 May-15 Early Nil Nil 58.9 70.5 Mid 4.4 13.0 Nil 1.3 Late Nil Nil Nil 0.4 Jun-15 Early 11.8 7.8 Nil 2.4 Mid Nil Nil Nil 2.0 3.1 Late 3.5 Nil Nil 9.1		Late	67.0	50.0	113.5	252.8
Late 5.9 Nil 7.4 9.6 Apr-15 Early 0.7 Nil 7.9 43.9 Mid 60.9 81.9 84.8 57.5 Late 2.1 Nil 12.7 0.4 May-15 Early Nil Nil 58.9 70.5 Mid 4.4 13.0 Nil 1.3 Late Nil Nil Nil 0.4 Jun-15 Early 11.8 7.8 Nil 2.4 Mid Nil Nil Nil 2.0 3.1 Late 3.5 Nil Nil 9.1	Mar-15	Early	54.8	35.0	5.5	33.7
Apr-15 Early 0.7 Nil 7.9 43.9 Mid 60.9 81.9 84.8 57.5 Late 2.1 Nil 12.7 0.4 May-15 Early Nil Nil 58.9 70.5 Mid 4.4 13.0 Nil 1.3 Mid 4.4 13.0 Nil 1.3 Jun-15 Early 11.8 7.8 Nil 2.4 Mid Nil Nil Nil 2.1 Jun-15 Early 3.5 Nil Nil 2.0 3.1 Late 3.5 Nil Nil 2.0 3.1		Mid	73.1	107.8	162.5	100.1
Mid 60.9 81.9 84.8 57.5 Late 2.1 Nil 12.7 0.4 May-15 Early Nil Nil 58.9 70.5 Mid 4.4 13.0 Nil 1.3 Late Nil Nil Nil 0.4 Jun-15 Early 11.8 7.8 Nil 2.4 Mid Nil Nil 1.3 1.3 1.4 Late Nil Nil 0.4 1.3 1.3 Late Nil Nil 0.4 1.3 1.4 1.4 1.3 1.4 1.4 1.3 1.4 1.4 1.3 1.4 1.4 1.3 1.4		Late	5.9	Nil	7.4	9.6
Late 2.1 Nil 12.7 0.4 May-15 Early Nil Nil 58.9 70.5 Mid 4.4 13.0 Nil 1.3 Late Nil Nil Nil 0.4 Jun-15 Early 11.8 7.8 Nil 2.4 Mid Nil Nil 2.0 3.1 Late 3.5 Nil Nil 9.1	Apr-15	Early	0.7	Nil	7.9	43.9
May-15 Early Nil Nil 58.9 70.5 Mid 4.4 13.0 Nil 1.3 Late Nil Nil Nil 0.4 Jun-15 Early 11.8 7.8 Nil 2.4 Mid Nil Nil Nil 2.1 Late 3.5 Nil Nil 9.1		Mid	60.9	81.9	84.8	57.5
Mid 4.4 13.0 Nil 1.3 Late Nil Nil Nil 0.4 Jun-15 Early 11.8 7.8 Nil 2.4 Mid Nil Nil 2.0 3.1 Late 3.5 Nil Nil 9.1		Late	2.1	Nil	12.7	0.4
Late Nil Nil Nil 0.4 Jun-15 Early 11.8 7.8 Nil 2.4 Mid Nil Nil 2.0 3.1 Late 3.5 Nil Nil 9.1	May-15	Early	Nil	Nil	58.9	70.5
Jun-15 Early 11.8 7.8 Nil 2.4 Mid Nil Nil 2.0 3.1 Late 3.5 Nil Nil 9.1		Mid	4.4	13.0	Nil	1.3
Mid Nil Nil 2.0 3.1 Late 3.5 Nil Nil 9.1		Late	Nil	Nil	Nil	0.4
Late 3.5 Nil Nil 9.1	Jun-15	Early	11.8	7.8		
		Mid	Nil	Nil	2.0	3.1
Early - 1 st to 10 th of the month Mid - 11 th to 20 th of the month Late - 21 st to end of the month		Late	3.5	Nil	Nil	9.1
	Early - 1st to 10th	of the month Mid - 11th to 20th	of the month Late - 21st	to end of the month		

Appendix 6 : hectares harvested												
			Average for	Last four seasons individually								
Mills	Crop	1991/ 1995	1996/ 2000	2001/ 2005	2006/ 2010	2011/ 2015	2012	2013	2014	2015		
Lautoka	Р	3634	2944	1042	788	775	279	566	681	1006		
	R	20580	19701	19730	14614	10630	11925	10403	10337	9876		
	Total	24214	22645	20772	15402	11405	12204	10969	11018	10882		
Rarawai	Р	2899	3164	1055	1127	953	665	833	803	1095		
	R	17360	14613	17585	14553	11367	12206	11415	11170	10754		
	Total	20259	17777	18640	15680	12320	12871	12248	11973	11849		
Labasa	Р	3120	2597	1269	1116	1403	559	1598	1035	1756		
	R	19604	18348	15911	14039	11500	12799	10054	11044	11216		
	Total	22724	20945	17180	15155	12903	13358	11652	12079	12972		
Penang	Р	1386	1120	542	339	368	158	318	260	580		
	R	4958	4674	4568	3991	3142	3367	2973	3098	3008		
	Total	6344	5794	5110	4330	3510	3525	3291	3358	3588		
All mills	Р	11039	9825	3908	3369	3499	1661	3315	2780	4437		
	R	62502	57336	57794	47197	36640	40298	34845	35647	34854		
	Total	73541	67161	61702	50567	40139	41959	38160	38427	39291		

Appendix	Appendix 7: Tonnes of cane harvested														
Mills		Average for	r period of f	ive seasons		La	st four seas	ons individu	ally						
	1991/ 1995	1996/ 2000	2001/ 2005	2006/ 2010	2011/ 2015	2012	2013	2014	2015						
Lautoka	1283569	1216597	971454	763321	516159	481483	405652	520264	521065						
Rarawai	1017374	957507	878509	738316	551682	508638	498881	596350	490765						
Labasa	1166055	1017061	840388	695728	547372	413285	546156	544353	662600						
Penang	291206	309205	239044	213253	170698	143568	159720	171214	170129						
All mills	3758204	3500370	2929395	2410619	1785912	1546974	1610409	1832181	1844559						

Appendix 8	Appendix 8 : Tonnes of cane per hectare harvested													
Mills			Average for	period of fiv	e seasons		Last	four season	s individ	ually				
	Crop	1991/ 1995	1996/ 2000	2001/ 2005	2006/ 2010	2011/ 2015	2012	2013	2014	2015				
Lautoka	Р	64.7	64.2	63.9	67.2	57.7	53.9	51.2	59.8	55.5				
	R	51.2	51.4	45.9	47.6	44.3	39.1	36.2	46.4	47.1				
	Total	52.4	53.7	46.8	49.1	45.2	39.5	37.0	47.2	47.9				
Rarawai	Р	61.2	62.1	59.6	58.8	56.7	53.1	56.6	61.6	49.6				
	R	48.1	52.9	46.4	44.8	43.8	38.8	39.6	49.0	40.6				
	Total	50.1	53.9	47.1	46.5	44.8	39.5	40.7	49.8	41.4				
Labasa	Р	59.3	56.5	59.7	56.7	53.4	43.9	59.4	58.3	58.9				
	R	50.4	47.4	47.6	43.5	41.4	30.4	44.8	43.8	49.9				
	Total	51.3	48.6	48.9	45.8	42.7	30.9	46.9	45.1	51.1				
Penang	Р	57.2	62.6	54.2	56.3	50.6	46.4	40.8	60.4	52.2				
	R	43.1	51.2	46.4	48.3	48.4	40.5	49.3	50.2	46.5				
	Total	46.0	53.3	46.8	49.1	48.6	40.7	48.5	51.0	47.4				
All	Р	61.2	61.8	58.3	59.5	55.3	49.5	55.5	59.8	54.9				
Mills	R	48.1	50.0	46.0	45.8	43.5	36.3	40.9	46.7	45.9				
	Total	50.2	52.1	47.5	47.3	44.5	36.9	42.2	47.7	46.9				

Appendix 3	9: Hectares harvest	ted in relation to r	egistered area	and cultivated area (ha)			
Mills	20	15 hectares (A)		Hectares harvested as % of various categories "A"			
	Registered (1)	Cultivated (2)	Harvested	(1)	(2)		
Lautoka	22810	11516	10882	47.7	94.5		
Rarawai	21910	13062	11849	54.1	90.7		
Labasa	18771	13245	12972	69.1	97.9		
Penang	7785	3883	3588	46.1	92.4		
Total	71276	41705	39291	55.1	94.2		

Appendix 10	Appendix 10 : Plant cane harvested as percentage of total cane harvested													
Mills		Average for	r period of fi	ive seasons	i	La	st four seas	ons individua	lly					
	1991/ 1995	1996/ 2000	2001/ 2005	2006/ 2010	2011/ 2015	2012	2013	2014	2015					
Lautoka	15.0	13.0	5.0	5.5	8.5	3.1	7.1	7.8	10.7					
Rarawai	14.0	18.0	6.0	8.2	9.7	6.9	9.4	8.3	11.1					
Labasa	14.0	12.0	7.0	8.2	13.4	5.9	17.4	11.1	15.6					
Penang	23.0	19.0	11.0	8.2	10.7	5.1	8.1	9.2	17.8					
All mills	16.0	15.0	7.0	7.4	10.5	5.3	10.5	9.1	13.2					

Page 74 FACP APPENDICES

Appendix	Appendix 11: Plant, ratoon yields and percentage of total area harvested - 2015 Crop														
Mills		Plant			First ratoon			her ratoon	S	All cane					
	tch	Area ha	% of Area	tch	Area ha	% of Area	tch	Area ha	% of Area	tch	Area ha				
Lautoka	55.5	1006	9.2	55.5	653	6.0	46.5	9223	84.7	47.9	10882				
Rarawai	49.6	1095	9.2	49.8	799	6.7	39.8	9955	8.4	41.4	11849				
Labasa	58.9	1756	14.0	65.2	1219	9.0	48.0	9997	7.7	51.1	12972				
Penang	52.2	580	16.2	50.3	238	6.6	46.2	2770	7.7	47.4	3588				
All Mills	54.9	4437	11.3	57.6	2908	7.4	44.9	31946	81.3	46.9	39291				

Appendix 12 :	Seasonal %F	POCS in car	ie						
Mills	Rou	igh average	e for period	of five seas	ons	Las	t four seaso	ons individu	ally
	1991/ 1995	1996/ 2000	2001/ 2005	2006/ 2010	2011/ 2015	2012	2013	2014	2015
Lautoka	12.5	11.4	11.5	10.8	11.4	10.7	11.6	12.9	12.4
Rarawai	12.9	11.4	11.9	10.9	11.3	10.7	11.5	12.0	12.6
Labasa	12.1	11.1	11.5	10.7	11.5	11.6	11.2	12.3	12.1
Penang	12.6	11.1	11.9	11.1	11.1	11.5	10.6	11.9	11.9
All Mill Avg.	12.5	11.2	11.7	11.0	11.4	11.1	11.3	12.3	12.3

Appendix 13: Wee	ekly POCS in cane 20	15 season			
Week no.	Lautoka	Rarawai	Labasa	Penang	Average
1	12.03	10.25	11.89	10.67	11.21
2	11.91	10.39	12.01	11.92	11.56
3	11.83	11.09	11.87	12.27	11.77
4	12.30	11.87	11.94	11.85	11.99
5	12.67	12.49	12.00	12.20	12.34
6	12.89	12.60	12.26	11.68	12.36
7	12.77	12.78	12.56	12.00	12.53
8	12.59	12.74	11.88	11.61	12.21
9	12.71	12.69	12.58	11.69	12.42
10	12.53	12.71	12.56	11.70	12.38
11	12.85	12.70	12.32	11.95	12.46
12	12.84	12.72	12.47	11.90	12.48
13	11.91	12.73	12.48	11.89	12.25
14	10.91	12.62	12.47	12.00	12.00
15	12.53	12.47	12.11	12.43	12.39
16	12.43	12.49	11.90	11.40	12.06
17	11.84	12.45	12.33	10.84	11.87
18	12.62	11.87	11.60		12.03
19	12.60	11.77	10.92		11.76
20	12.65	11.70	8.09		10.81
21	12.73				12.73
22	12.75				12.75
Average	12.40	12.16	11.91	11.76	12.11

Appendix	14 : Sugar p	roduced (tor	nnes 94 N.T.	equivalent)											
Mills		Tonnes sugar 94 N.T equivalent													
	2007	2008	2009	2010	2011	2012	2013	2014	2015						
Lautoka	75656	77311	53313	43384	50306	48129	41874	76456	63784						
Rarawai	78786	63954	42222	31580	61028	45732	60039	68277	61083						
Labasa	68255	53160	57548	40943	45146	45398	63423	69647	82744						
Penang	21858	23231	22818	18530	16838	19908	19258	21684	18731						
All mills	244555	217656	175901	134436	173318	159166	184594	236065	226342						

Appendix	ix 15 : Sugar tonnes 94 N.T equivalent per hectare (tsh)													
Mills	Average fo	r period of fi	ve seasons			Last five								
	1991/ 1995	1996/ 2000	2001/ 2005	2006/ 2010	2011/ 2015	2011	2012	2013	2014	2015				
Lautoka	6.2	5.6	4.9	4.4	4.9	4.2	3.8	3.8	6.9	5.9				
Rarawai	6.3	5.6	5.4	4.0	4.9	4.8	3.8	4.7	5.6	5.2				
Labasa	6.0	5.0	5.0	4.0	5.1	3.1	3.4	5.3	5.6	6.4				
Penang	5.5	5.4	4.7	5.4	5.5	4.5	5.6	5.9	6.5	5.2				
Average	6.1	5.4	5.1	4.3	5.1	4.0	4.2	4.9	6.1	5.7				

Appendix	16: Lengtl	h of seasoi	n (weeks) - S	Start and fin	ish of crush	ning (date)			
Mills	A	verage ler	ngth of seas	on (5 yearly	')		Last four seas	ons individu	ally
	1991/ 1995	1996/ 2000	2001/ 2005	2006/ 2010	2011/ 2015	2012	2013	2014	2015
						24.2	19.0	19	21
Lautoka	28.0	29.7	27.6	27.0	27.9	26/06/12	02/06/13	01/07/14	02/07/15
Lauloka	20.0	29.1	21.0	21.0	21.9	to	То	То	То
						04/12/12	03/11/13	08/11/14	24/11/15
						22.8	20	21.5	19.4
Rarawai	25.3	26.5	24.2	28.0	22.1	10/07/12	26/06/13	19/06/14	23/06/15
Raiawai	20.0	20.5	Z4.Z	20.0	22.1	to	То	То	То
						17/12/12	13/11/13	17/11/14	28/10/15
						16.1	19	16.5	19.2
Labasa	29.4	30.7	24.1	25.9	18.7	26/06/12	27/06/13	17/06/14	17/06/15
Labasa	29.4	30.7	24.1	20.9	10.7	to	То	То	То
						16/10/12	09/11/13	11/10/14	28/10/15
						16.3	17	16.9	15.9
Deneng	01 F	26.2	20.4	22.5	18.1	26/06/12	25/06/13	27/06/14	29/06/15
Penang	21.5	20.2	20.4	22.3	10.1	to	То	То	То
						18/10/12	20/10/13	11/10/14	19/10/15
All mills	26.1	28.2	24.1	25.9	21.7	19.9	18.7	18.5	18.9

Appendix 17 :	Varieties F	Percent of h	ectares har	vested						
	Lau	toka	Rara	awai	Lab	asa	Pen	ang	All M	ills
Varieties	2014	2015	2014	2015	2014	2015	2014	2015	2014	2015
Ragnar	0.6	0.7	0.5	0.7	23.9	24.4	0.1	0.7	7.5	8.5
Waya	nil	nil	0.4	0.3	6.7	7.3	0.1	0.4	2.1	2.5
Mali	0.1	nil	nil	1.2	10.3	11.8	0.1	0.1	3.1	4.3
Galoa	0.1	0.2	nil	0.0	6.2	5.3	0.1	0.3	1.9	1.8
Aiwa	0.4	0.4	0.3	0.3	0.2	0.3	nil	0.1	0.3	0.3
Kiuva	1.3	0.9	1.1	nil	0.8	0.5	0.3	0.3	1.0	0.5
Mana	91.8	92.1	90.9	89.9	nil	nil	95.4	90.9	64.3	60.9
LF91-1925	1.0	1.2	0.3	0.6	0.9	1.3	0.1	0.2	0.6	1.0
Kaba	2.3	2.3	5.0	5.6	0.4	0.4	0.3	0.9	2.6	2.6
Vatu	nil	0.1	nil	nil	16.6	16.9	nil	0.2	4.9	5.6
Beqa	0.3	0.1	nil	nil	nil	0.1	nil	nil	0.1	0.0
Naidiri	1.7	1.6	0.9	1.0	33.8	31.7	3.4	5.9	11.2	11.8
Exp.	nil	0.1	nil	nil	nil	nil	nil	nil	nil	0.0
Other var.	0.3	0.1	0.6	0.3	nil	0.2	0.03	nil	nil	0.2

Page 76 FACP APPENDICES

Mills	Hect	tares plante	d		es planted as gistered area		Hectares planted as % of cultivated area			
	2013	2014	2015	2013	2014	2015	2013	2014	2015	
Lautoka	741	1117	574	3.3	4.9	2.5	5.5	9.5	5.0	
Rarawai	944	1277	546	44.6	5.9	3.0	61.9	9.1	4.4	
Labasa	1157	1979	1256	6.3	10.2	6.7	8.5	14.8	9.4	
Penang	285	509	355	3.7	6.6	4.4	5.5	9.5	8.9	
Total	3128	4882	2731	14.5	6.8	3.8	20.4	11.0	6.5	

Append	Appendix 19: Percentage of total area planted by different varieties over three years										
		Lau	toka	Rara	awai	Labasa		Penang		All mills	
Year	Varieties	%	Area	%	Area	%	Area	%	Area	%	Area
	Vanotioo		ha		ha		ha		ha		ha
2013	- David	3.8	28.2	2.3	21.7	27.2	314.8	nil	nil	nil	nil
2014	Ragnar	0.6	6.7	0.5	6.4	23.9	473.0	0.1	0.5	7.5	366.1
2015		0.7	3.8	2.8	15.3	25.0	313.9	0.1	0.4	12.2	333.1
2013	10/000	nil	nil	0.6	5.7	5.0	57.9	nil	nil	nil	nil
2014	Waya	0.1	1.1	0.4	5.1	6.7	132.6	0.1	0.5	2.1	102.5
2015		nil	nil	0.9	4.9	5.6	70.3	nil	nil	2.8	76.5
2013	Maria	69.0	511.4	63.0	594.8	nil	nil	64.6	184.3	41.3	3128.0
2014	Mana	91.8	1025.1	90.9	1160.4	nil	nil	95.4	485.6	64.3	3138.8
2015		80.8	463.8	60.0	327.8	nil	nil	62.3	221.0	37.1	1013.1
2013	0.1	1.0	7.4	nil	nil	6.3	72.9	nil	nil	nil	nil
2014	Galoa	0.1	1.1	nil	nil	6.2	122.7	0.1	0.5	1.9	92.7
2015		0.3	1.7	nil	nil	8.2	103.0	2.9	10.3	4.2	114.7
2013		nil	nil	nil	nil	13.0	150.4	0.4	1.1	nil	nil
2014	Vatu	nil	nil	nil	nil	16.6	328.5	nil	nil	4.9	239.2
2015		nil	nil	nil	nil	7.9	99.2	nil	nil	3.6	98.3
2013	Mali	0.1	0.7	nil	nil	8.5	98.4	nil	nil	nil	nil
2014	Mali	0.1	1.1	nil	nil	10.3	203.9	0.1	0.5	3.1	151.3
2015 2013		nil	nil	nil 1.2	nil 11.3	6.2	77.8 1.2	0.1	0.4	2.9	79.2
2013	Aimo	1.4 0.4	10.4	0.3	3.8	0.1 0.2	4.0	nil nil	nil nil	nil 0.3	nil 14.6
	Aiwa	0.4 1.4	4.5 8.0		3.0 2.7	0.2	4.0	0.7			
2015 2013		0.4	8.0 3.0	0.5					2.5	0.5	13.7
2013	Bogo	0.4	3.0	nil nil	nil	nil	nil	nil	nil	nil	nil
2014	Beqa	0.3 nil	3.4 nil	nii	nil nil	nil nil	nil nil	nil nil	nil nil	nil nil	nil nil
2013		5.3	39.3	11.4	107.6	0.5	5.8	0.3	0.9	nil	nil
2013	Kaba	2.3	25.7	5.0	63.8	0.3	7.9	0.3	0.9 1.5	2.6	126.9
2014	Naba	7.1	40.8	16.1	88.0	0.4	5.0	2.5	8.9	5.2	142.0
2013		8.8	40.8 65.2	2.8	26.4	34.7	401.6	0.3	0.9	J.Z nil	nil
2013	Naidiri	1.7	19.0	0.9	11.5	33.8	669.0	3.4	17.3	11.2	546.7
2014	Naidin	4.0	23.0	5.0	27.3	37.4	469.6	29.1	103.2	22.8	622.6
2013		5.1	37.8	nil	nil	2.0	23.1	nil	nil	nil	nil
2013	Kiuva	1.3	14.5	1.1	14.0	0.8	15.8	0.3	1.5	1.0	48.8
2014	Riuva	nil	nil	1.1	7.6	0.0	6.3	0.3	0.4	0.5	13.7
2013		4.6	34.1	nil	nil	2.4	27.8	nil	0.4 nil	nil	nil
2013	LF91-1925	4.0	11.2	0.3	3.8	0.9	17.8	0.1	0.5	0.6	29.3
2014		3.8	21.8	11.0	60.1	6.9	86.6	2.1	7.5	6.5	177.5
2013	Experiment	0.2	1.5	0.2	1.9	nil	nil	z.i nil	nil	nil	nil
2013	Other	0.2	1.1	0.2	3.3	0.1	2.0	nil	nil	0.3	14.6
2014	Varieties	nil	nil	2.3	29.4	1.8	2.0	nil	nil	1.3	35.5
2015	varieties	1111	1111	۷.۵	29.4	1.0	22.0	1111	[]]]	1.3	55.5

	1	Cane transport in Fiji (tonnes of cane harvested and actual method of delivery)								
Mills	Year	Delivered p	ortable line		ler or lorry	Lorry dire		То	otal	
		_			inline	car				
	0007	Tonnes	% of Total	Tonnes	% of Total	Tonnes	% of Total	Tonnes	% of Total	
Lautoka	2007	13652	2.0	158002	21.0	569577	77.0	741231	100	
	2008	15915	2.0	179905	24.0	574754	74.0	770567	100	
	2009	12464	2.0	168852	23.0	544730	75.0	726046	100	
	2010	3964	1.0	129410	25.0	394094	75.0	527468	100	
	2011	9491	1.5	144569	22.2	498273	76.4	652333	100	
	2012	2065	0.4	113819	23.6	365599	75.9	481483	100	
	2013 2014	12464	1.7	168852	23.3 22.4	544730	75.0	726046	100	
	2014	1436 nil	0.3 nil	116328 111036	22.4	402500 410029	77.4 78.7	520264 521065	100 100	
Rarawai	2015									
Nalawal		32927	5.0	184605	25.0	520946	70.0	738478	100	
	2008	38797	5.0	184094	25.0	509470	70.0	732165	100	
	2009	23827	4.0	164490	25.0	471034	71.0	659351	100	
	2010	25106	5.0	126450	24.0	370460	71.0	522016	100	
	2011	23586	3.6	332792	50.1	307396	46.3	663774	100	
	2012	14772	3.6	106393	24.9	387485	71.4	508650	100	
	2013	22054	6.3	100000	30.2	220584	64.0	347417	100	
	2013	14006	2.2	113691	18.0	468653	79.8	596350	100	
	2014	12032	2.2	93635	10.0	385098	78.5	490765	100	
Labasa	2010	2910	0.3	233371	31.0	532847	69.0	769138	100	
Labada	2008									
		1275	0.2	179815	30.0	423224	70.0	604314	100	
	2009	nil	nil	230735	34.0	448849	66.0	679584	100	
	2010	nil	nil	171042	34.0	383485	66.0	554527	100	
	2011	nil	nil	162856	29.0	407610	71.0	570466	100	
	2012	840	0.2	117543	28.4	294902	71.4	413285	100	
	2013	nil	nil	137018	25.1	409138	75.0	546156	100	
	2014	nil	nil	149353	27.4	395000	72.6	544353	100	
	2015	nil	nil	181420	27.4	481180	72.6	662600	100	
Penang	2007	3010	1.0	55450	24.0	171378	75.0	229838	100	
	2008	3026	1.0	48285	23.0	163261	76.0	214572	100	
	2009	11145	6.0	30977	17.0	139528	77.0	181650	100	
	2000									
		nil	nil	44447	25.0	131254	75.0	175701	100	
	2011	nil	nil	55422	26.5	153438	73.5	208860	100	
	2012	nil	nil	38712	27.0	104856	73.0	143568	100	
	2013	nil	nil	40797	26.0	118923	75.0	159720	100	
	2014	nil	nil	36454	21.3	134760	78.7	171214	100	
	2015	nil	nil	31707	18.6	138422	81.4	170129	100	
All mills	2007	52509	2.0	128061	16.0	2298115	82.0	2478685	100	
	2008	59013	3.0	592099	26.0	1670704	72.0	2321620	100	
	2009	47436	2.0	595054	26.0	1604141	71.0	2246631	100	
	2010	29070	1.6	471349	26.5	1279293	72.0	1779712	100	
	2011	33077	1.6	695639	33.2	1366717	65.2	2095433	100	
	2011	17677	1.0	376467	24.3	1152842	74.5	1546986	100	
	2012									
		8630	2.0	451446	26.2	1293375	74.1	1779339	100	
	2014	15442	0.8	415826	22.7	1400913	76.5	1832181	100	
	2015	12032	0.7	417798	22.7	1414729	76.6	1844559	100	

Append	dix 21: I	Percentage burnt	cane of	total tonnes cr	ushed					
V		Lautoka		Rarawai		Labasa		Penang		Average
Year	%	Total	%	Total	%	Total	%	Total	%	Total
1976	12.9	917428	28.0	731865	4.9	445798	15.1	154116	15.2	2249027
1977	17.7	1044468	28.9	825628	6.9	606154	11.8	198116	16.3	2674366
1978	19.1	1043064	25.3	799497	9.6	756793	8.2	250168	15.6	2849522
1979	14.9	1699234	25.9	1123509	9.6	940636	15.0	294605	16.4	4057984
1980	21.5	1348039	27.4	958414	16.0	782742	18.0	271096	20.7	3360291
1981	17.6	1444504	21.2	1248910	19.4	930265	17.0	307753	18.8	3931432
1982	23.2	1507831	24.8	1100133	13.6	1140552	13.2	326348	18.7	4074864
1983	18.3	639823	18.4	561774	18.0	761454	12.0	239482	16.7	2202533
1984	25.1	1731580	8.2	1146140	12.9	1136737	10.0	382030	14.1	4396487
1985	28.6	947593	25.2	864264	22.4	934166	16.2	296418	23.1	3042441
1986	29.5	1526648	15.1	1204661	15.1	1017372	11.3	360284	17.8	4108965
1987	23.8	1090111	34.2	685994	20.9	877652	19.0	306706	24.5	2960463
1988	37.7	1116916	15.2	742128	16.0	1034788	19.2	291440	22.0	3185272
1989	20.6	1537337	13.6	1250977	12.7	974201	10.0	336418	14.2	4098933
1990	24.3	1347531	30.4	1148070	13.7	1171817	14.6	348110	20.8	4015528
1991	42.5	1112957	46.4	961961	32.0	1029223	27.6	276261	37.1	3380402
1992	52.5	1109778	52.1	962936	44.4	1162108	41.1	297818	47.5	3532640
1993	35.6	1341537	33.4	1013627	29.2	1124357	19.4	224383	29.4	3703904
1994	39.0	1337977	36.0	1104246	27.0	1298285	19.8	323743	30.5	4064251
1995	43.4	1515880	42.5	1044098	37.6	1216290	28.7	333790	38.1	4110058
1996	54.8	1561446	48.1	1229978	39.9	1238443	33.2	349348	44.0	4379215
1997	50.7	1160879	49.1	906495	33.5	910137	34.8	302095	42.0	3279606
1998	67.0	625763	67.7	406811	54.5	832622	44.6	232825	58.5	2098021
1999	41.6	1433143	39.8	992968	17.0	1192735	26.3	339292	32.4	3958138
2000	56.1	1301752	54.6	1251282	37.8	911370	49.0	322475	50.6	3786879
2001	56.7	906743	50.3	844411	18.9	845444	49.5	208183	42.9	2804781
2002	46.8	1137123	41.8	1071579	21.4	938450	33.9	275431	37.1	3422583
2003	40.1	890499	32.8	836728	29.3	638851	22.0	243602	33.4	2609680
2004	42.7	1032127	39.5	878121	18.3	848533	35.5	242408	34.3	3001189
2005	44.4	890779	38.4	761704	25.0	910663	34.9	225594	35.7	2788740
2006	60.5	1051097	58.5	1039474	34.4	871031	46.5	264498	51.7	3226100
2007	39.0	741231	40.5	738478	39.1	769138	53.5	229844	40.8	2478691
2008	50.9	770569	53.6	732165	49.1	604314	48.5	214572	51.1	2321620
2009	43.5	726046	33.3	659351	18.6	679584	28.8	181650	31.8	2246631
2010	30.4	527663	33.6	522114	18.6	554575	16.3	175701	25.0	1780053
2011	28.5	652333	28.2	663774	17.9	570468	26.6	208860	25.3	2095435
2012	43.8	481483	44.7	508638	18.7	413285	28.3	143568	35.9	1546974
2013	77.8	726046	31.9	347417	14.2	546156	27.0	159720	37.7	1779339
2014	50.7	520264	49.9	596350	22.0	544353	28.0	171214	39.9	1832181
2015	47.0	244680	48.5	238167	27.7	183840	31.0	52688	39.0	719375

APPROVED VARIETIES

APPROVED VARIETIES

The list of sugarcane varieties approved for planting during 2015 has been revised to include maturity trend. Varieties that are no longer planted have been removed from the approved varieties list. The varieties are recommended to growers on their soil type. The growers have a choice of at least three varieties to plant on their farms as laid down in the Master Award.

Mill/Sectors	Soil types	Varieties recommende	d on maturity trends
		Early – mid maturing	Mid – late maturing
Lautoka/Olosara	Rich alluvial soils	Aiwa, Beqa, Naidiri, LF91-1925	Ragnar, Kaba, Kiuva, Viwa
	Medium soils	Aiwa, Beqa, Naidiri, LF91-1925	Ragnar, Kaba, Kiuva, Viwa
	Poor soils	LF91-1925, Qamea	Kaba, Mana, Viwa
Lautoka/Cuvu	Flat Fertile soils	Aiwa, Beqa, Naidiri, LF91-1925	Ragnar, Kaba, Kiuva, Viwa
	Medium soils	Aiwa, Beqa, Naidiri, LF91-1925	Ragnar, Kaba, Kiuva, Viwa
	Poor soils	LF91-1925, Qamea	Kaba, Mana, Viwa
Lautoka /Lomanusi	Sandy soils	LF91-1925	Kaba, Mana, Viwa
Lautoka/Lomawai	Flat Fertile soils Medium soils	Aiwa, Beqa, Naidiri, LF91-1925 Aiwa, Beqa, Naidiri, LF91-1925	Ragnar, Kaba, Kiuva, Viwa Ragnar, Kaba, Kiuva, Viwa
	Poor soils	LF91-1925, Qamea	Kaba, Mana, Viwa
	Sandy soils	LF91-1925	Kaba, Mana, Galoa
Lautoka/Yako	Flat Fertile soils	Aiwa, Beqa, Naidiri, LF91-1925	Ragnar, Kaba, Kiuva, Viwa
	Medium soils	Aiwa, Beqa, Naidiri, LF91-1925	Ragnar, Kaba, Kiuva, Viwa
	Poor soils	LF91-1925, Qamea	Kaba, Mana, Viwa
	Sandy soils	LF91-1925	Kaba, Mana, Galoa
Lautoka/Nawaicoba	Flat Fertile soils	Aiwa, Beqa, Naidiri, LF91-1925	Ragnar, Kaba, Kiuva, Viwa
	Medium soils	Aiwa, Beqa, Naidiri, LF91-1925	Ragnar, Kaba, Vatu, Kiuva,
			Viwa
	Poor soils	LF91-1925, Qamea	Kaba, Mana, Viwa
Lautoka (Malolo	Sandy soils Flat Fertile soil	LF91-1925 Aiwa Baga Naidiri LE01 1025	Kaba, Mana, Galoa
Lautoka/Malolo	FIAL FEILIE SOII	Aiwa, Beqa, Naidiri, LF91-1925	Ragnar, Kaba, Kiuva, Viwa Ragnar, Kaba, Vatu, Kiuva,
	Medium soils	Aiwa, Beqa, Naidiri, LF91-1925	Viwa
	Poor soils	LF91-1925, Qamea	Kaba, Mana, Viwa
Lautoka/Qeleloa	Rich alluvial soils	Aiwa, Beqa, Naidiri, LF91-1925	Ragnar, Kaba, Kiuva
	Medium soils	Aiwa, Beqa, Naidiri, LF91-1925	Ragnar, Kaba, Vatu, Kiuva, Viwa
	Poor soils	LF91-1925, Qamea	Kaba, Mana, Viwa
Lautoka/Meigunyah	Flat Fertile soils	Aiwa, Beqa, Naidiri, LF91-1925	Ragnar, Kaba, Kiuva, Viwa
	Medium soils	Aiwa, Beqa, Naidiri, LF91-1925	Ragnar, Kaba, Vatu, Kiuva, Viwa
	Poor soils	LF91-1925, Qamea	Kaba, Mana, Viwa
Lautoka/Legalega	Flat Fertile soils	Aiwa, Beqa, Naidiri, LF91-1925	Ragnar, Kaba, Kiuva, Viwa
	Medium soils	Aiwa, Beqa, Naidiri, LF91-1925	Ragnar, Kaba, Vatu, Kiuva, Viwa
	Poor soils	LF91-1925, Qamea	Kaba, Mana, Viwa
Lautoka/Natova	Flat Fertile soils	Aiwa, Beqa, Naidiri, LF91-1925	Ragnar, Kaba, Kiuva, Viwa
	Medium soils	Aiwa, Beqa, Naidiri, LF91-1925	Ragnar, Kaba, Vatu, Kiuva, Viwa
	Poor soils	LF91-1925, Qamea	Kaba, Mana, Viwa
	Sandy soils	LF91-1925	Kaba, Mana, Galoa
Lautoka/Lautoka	Flat Fertile soils	Aiwa, Beqa, Naidiri, LF91-1925	Ragnar, Kaba, Kiuva, Viwa
	Medium soils	Aiwa, Beqa, Naidiri, LF91-1925	Ragnar, Kaba, Vatu, Kiuva, Viwa
	Poor soils	LF91-1925, Qamea	Kaba, Mana, Viwa
Lautoka/Saweni	Flat Fertile soils	Aiwa, Beqa, Naidiri, LF91-1925	Ragnar, Kaba, Kiuva, Viwa
	Medium soils	Aiwa, Beqa, Naidiri, LF91-1925	Ragnar, Kaba, Vatu, Kiuva, Viwa

Mill/Sectors	Soil types	Varieties recommende	ed on maturity trends
	Son types	Early – mid maturing	Mid – late maturing
Lautoka/Saweni	Poor soils	LF91-1925, Qamea	Kaba, Mana, Viwa
	Sandy soils	LF91-1925	Kaba, Mana, Galoa
Lautoka/Lovu	Flat Fertile soils	Aiwa, Beqa, Naidiri, LF91-1925	Ragnar, Kaba, Kiuva, Viwa Ragnar, Kaba, Vatu, Kiuva,
	Medium soils	Aiwa, Beqa, Naidiri, LF91-1925	Viwa
	Poor soils	LF91-1925, Qamea	Kaba, Mana, Viwa
Lautoka/Drasa	Flat Fertile soils	Aiwa, Beqa, Naidiri, LF91-1925	Ragnar, Kaba, Kiuva, Viwa
	Medium soils	Aiwa, Beqa, Naidiri, LF91-1925	Ragnar, Kaba, Vatu, Kiuva, Viwa
	Poor soils	LF91-1925, Qamea	Kaba, Mana, Viwa
	Sandy soils	LF91-1925	Kaba, Mana, Galoa
Rarawai/Varoko	Flat Fertile soils	Aiwa, Beqa, Naidiri, LF91-1925	Ragnar, Kaba, Kiuva, Viwa
	Medium soils	Aiwa, Beqa, Naidiri, LF91-1925	Ragnar, Kaba, Vatu, Kiuva, Viwa
	Poor soils	LF91-1925, Qamea	Kaba, Mana, Viwa
Rarawai/Mota	Flat Fertile soils	Aiwa, Beqa, Naidiri, LF91-1925	Ragnar, Kaba, Kiuva, Viwa
	Medium soils	Aiwa, Beqa, Naidiri, LF91-1925	Ragnar, Kaba, Vatu, Kiuva, Viwa
	Poor soils	LF91-1925, Qamea	Kaba, Mana, Viwa
Rarawai/Naloto	Flat Fertile soils	Aiwa, Beqa, Naidiri, LF91-1925	Ragnar, Kaba, Kiuva, Viwa
	Medium soils	Aiwa, Beqa, Naidiri, LF91-1925	Ragnar, Kaba, Vatu, Kiuva,
			Viwa
Deveryei/Kevenyei	Poor soils	LF91-1925, Qamea	Kaba, Mana, Viwa
Rarawai/Koronubu	Flat Fertile soils	Aiwa, Beqa, Naidiri, LF91-1925	Ragnar, Kaba, Kiuva, Viwa Ragnar, Kaba, Vatu, Kiuva,
	Medium soils	Aiwa, Beqa, Naidiri, LF91-1925	Viwa
Deveryation	Poor soils	LF91-1925, Qamea	Kaba, Mana, Viwa
Rarawai/Veisaru	Flat Fertile soils	Aiwa, Beqa, Naidiri, LF91-1925	Ragnar, Kaba, Kiuva, Viwa Ragnar, Kaba, Vatu, Kiuva,
	Medium soils	Aiwa, Beqa, Naidiri, LF91-1925	Viwa
	Poor soils	LF91-1925, Qamea	Kaba, Mana, Viwa
Rarawai/Rarawai	Flat Fertile soils	Aiwa, Beqa, Naidiri, LF91-1925	Ragnar, Kaba, Kiuva, Viwa
	Medium soils	Aiwa, Beqa, Naidiri, LF91-1925	Ragnar, Kaba, Vatu, Kiuva,
	Poor soils	LF91-1925, Qamea	Viwa Kaba, Mana, Viwa
Rarawai/Varavu	Flat Fertile soils	Aiwa, Beqa, Naidiri, LF91-1925	Ragnar, Kaba, Kiuva, Viwa
raiara, raiara			Ragnar, Kaba, Vatu, Kiuva,
	Medium soils	Aiwa, Beqa, Naidiri, LF91-1925	Viwa
	Poor soils	LF91-1925, Qamea	Kaba, Mana, Viwa
Rarawai/Tagitagi	Flat Fertile soils	Aiwa, Beqa, Naidiri, LF91-1925	Ragnar, Kaba, Kiuva, Viwa
	Medium soils Poor soils	Aiwa, Beqa, Naidiri, LF91-1925	Mana, Kaba, Vatu, Viwa Kaba, Mana, Viwa
	Saline areas	LF91-1925, Qamea Naidiri, LF91-1925	Kaba, Mana, Viwa Kaba, Mana, Galoa
Rarawai/Yaladro	Flat Fertile soils	Aiwa, Beqa, Naidiri, LF91-1925	Ragnar, Kaba, Kiuva, Viwa
			Ragnar, Kaba, Vatu, Kiuva,
	Medium soils	Aiwa, Beqa, Naidiri, LF91-1925	Viwa
	Poor soils	LF91-1925, Qamea	Kaba, Mana, Viwa
Rarawai/Drumasi	Flat Fertile soils	Aiwa, Beqa, Naidiri, LF91-1925	Ragnar, Kaba, Kiuva, Viwa
	Medium soils Poor soils	Aiwa, Beqa, Naidiri, LF91-1925	Mana, Kaba, Vatu, Viwa Kaba, Mana, Viwa
	Saline areas	LF91-1925, Qamea Naidiri, LF91-1925	Kaba, Mana, Viwa Kaba, Mana, Galoa
Labasa/Waiqele	Flat Fertile soils	Aiwa, Beqa, Naidiri, LF91-1925	Ragnar, Kaba, Kiuva, Viwa
· · · · · · · · · · · · · · · · · · ·	Medium soils	Aiwa, Beqa, Naidiri, LF91-1925	Ragnar, Kaba, Vatu, Kiuva, Viwa
	Poor soils	Naidiri, LF91-1925, Qamea	Kaba, Mali, Viwa
		Naturi, Li Ji 1923, Qamed	

Page 82 APPROVED VARIETIES

Mill/Sectors	Soil types	Varieties recommended	d on maturity trends
		Early – mid maturing	Mid – late maturing
Labasa/Wailevu	Flat Fertile soils	Aiwa, Beqa, Naidiri, LF91-1925	Ragnar, Kaba, Kiuva, Viwa
	Medium soils	Aiwa, Beqa, Naidiri, LF91-1925	Ragnar, Kaba, Vatu, Kiuva, Viwa
	Poor soils	Naidiri, LF91-1925, Qamea	Kaba, Mali, Viwa
Labasa/Vunimoli	Saline soils Flat Fertile soils	Naidiri, LF91-1925 Aiwa, Beqa, Naidiri, LF91-1925	Galoa, Vatu Ragnar, Kaba, Kiuva, Viwa
	Medium soils	Aiwa, Beqa, Naidiri, LF91-1925	Ragnar, Kaba, Vatu, Kiuva, Viwa
	Poor soils	Naidiri, LF91-1925, Qamea	Kaba, Mali, Viwa
Labasa/Labasa	Flat Fertile soils	Aiwa, Beqa, Naidiri, LF91-1925	Ragnar, Kaba, Kiuva, Viwa
	Medium soils	Aiwa, Beqa, Naidiri, LF91-1925	Ragnar, Kaba, Vatu, Kiuva, Viwa
	Poor soils	Naidiri, LF91-1925, Qamea	Kaba, Mali, Viwa
Labasa/Bucaisau	Saline soils Flat Fertile soils	Naidiri, LF91-1925 Aiwa, Beqa, Naidiri, LF91-1925	Galoa, Vatu, Mali Ragnar, Kaba, Kiuva, Viwa
Labasa/Ducaisau		· · · ·	Ragnar, Kaba, Vatu, Kiuva,
	Medium soils	Aiwa, Beqa, Naidiri, LF91-1925	Waya, Viwa
	Poor soils	Naidiri, LF91-1925, Qamea	Kaba, Waya, Mali, Viwa
Labasa/Wainikoro	Saline soils Flat Fertile soils	Naidiri, LF91-1925 Aiwa, Beqa, Naidiri, LF91-1925	Galoa, Vatu, Mali Ragnar, Kaba, Kiuva, Viwa
			Ragnar, Kaba, Vatu, Kiuva,
	Medium soils	Aiwa, Beqa, Naidiri, LF91-1925	Waya, Viwa
	Poor soils	Naidiri, LF91-1925, Qamea	Kaba, Waya, Mali, Viwa
Labasa/Daku	Saline soils Flat Fertile soils	Naidiri, LF91-1925 Aiwa, Beqa, Naidiri, LF91-1925	Galoa, Vatu, Mali Ragnar, Kaba, Kiuva, Viwa
Labada, Dana	Medium soils	Aiwa, Beqa, Naidiri, LF91-1925	Ragnar, Kaba, Vatu, Kiuva, Waya, Viwa
	Poor soils	Naidiri, LF91-1925, Qamea	Kaba, Waya, Mali, Viwa
Labasa/Natua	Poor soils	Aiwa, Naidiri, LF91-1925, Qamea	Ragnar, Kaba, Mali, Viwa
Labasa/Solove	Poor soils	Aiwa, Naidiri, LF91-1925, Qamea	Ragnar, Kaba, Mali, Viwa
Labasa/Bulivou	Poor soils	Aiwa, Naidiri, LF91-1925, Qamea	Ragnar, Kaba, Mali, Viwa
Penang/Nanuku	Flat Fertile soils	Aiwa, Beqa, Naidiri, LF91-1925	Ragnar, Kaba, Kiuva, Viwa
	Medium soils	Aiwa, Beqa, Naidiri, LF91-1925	Ragnar, Kaba, Vatu, Kiuva, Viwa
	Poor soils Salt affected areas	LF91-1925, Qamea	Kaba, Mana, Viwa Galoa
		Naidiri, LF91-1925	Mana, Kaba, Kiuva, Mali,
	Viti Vanua area	Naidiri, LF91-1925, Qamea	Viwa
Penang/Malau	Rich alluvial soils	Aiwa, Beqa, Naidiri, LF91-1925	Ragnar, Kaba, Kiuva, Viwa Ragnar, Kaba, Vatu, Kiuva,
	Medium soils	Aiwa, Beqa, Naidiri, LF91-1925	Mali, Viwa
	Poor soils	LF91-1925, Qamea	Kaba, Mana, Viwa
Dopona /Ellipator	Salt affected areas	Naidiri, LF91-1925	Galoa Dagnar Kaba Kiuwa Viwa
Penang/Ellington	Flat Fertile soils	Aiwa, Beqa, Naidiri, LF91-1925	Ragnar, Kaba, Kiuva, Viwa Ragnar, Kaba, Vatu, Kiuva,
	Medium soils	Aiwa, Beqa, Naidiri, LF91-1925	Mali, Viwa
	Poor soils	LF91-1925, Qamea	Kaba, Mana, Viwa
	Salt affected areas	Naidiri, LF91-1925	Galoa

ABBREVIATIONS

SRIF	_	Sugar Research Institute of Fiji
FSC	-	
SIT	-	
SCGC	_	Sugar Cane Growers Council
SCGF	-	
MoS	-	
SPF	-	
FMS	-	Fiji Meteorological Services
EU	-	
CIRAD	-	Centre de coopération internationale en recherche agronomique pour le
POCS or pocs	-	Pure obtainable cane sugar
NPK	-	Nitrogen, Phosphorus, Potassium
Ν	-	Nitrogen
Р	-	Phosphorus
К	-	Potassium
RCBD	-	Randomized Complete Block Design
Rep	-	Replication
Trt or Trts	-	Treatment(s)
Tph or Tpha	-	Tonnes cane per hectare
Tsh or Tsha	-	Tonnes sugar per hectare
TC/TS or tc/ts	-	Tonnes cane per tonnes sugar (tonnes of cane required to
		produce 1 ton of sugar)
AVG./Avg.	-	Average
LF[YEAR]	-	Lautoka Fiji [year in which the fuzz was planted], e.g. LF2014
G x E	-	Genetic by Environment
FFE	-	Farmer Feel Effect
QBPS	-	Quality Based Payment Scheme
FSI	-	Fijian Sugar Industry
ASPAC	-	Australian Soil and Plant Analysis Council
LBC	-	Lime Buffering Capacity
FTIR	-	Frontier Transform Infra-Red
CQD	-	Cane Quality Department
IMG	-	Industry Management Group
UV-VIS	-	Ultra violet visible light spectrum
RMSECV	-	Root Mean Square Error of Cross validation
SOI	-	Southern Oscillation Index
ENSO	-	El Niño Southern Oscillation

GLOSSARY	
Clones / Varieties	The distinct individual sugarcane type that can be identified by numerous attributes or a combination of it, such as stalk color, stalk shape, leaf type, etc.
Series	When used in the context of plant breeding, it refers to a set of clones or varieties distinguished by the year in which those clones or varieties were initially planted from fuzz (seed) stage.
Germplasm	A collection of clones that has recorded desirable traits such as high fiber, disease tolerant, etc.
Fuzz	Sugarcane seeds, not to be confused with seeds commonly referred to in the sugar industry as the stalks of sugarcane used for planting. Seeds in this case are all different varieties, much like seeds of beans, cucumbers or chilies.
Ratoon	Commonly referred to the sugarcane crop that established or grew after the initial plant crop was harvested.
Breeding Plots / Flowering Beds	Small areas planted with sugarcane for the purpose of harvesting flowers from.
Gene Pool	Basically referring to the Germplasm from a genetics point of view.
Standards	Sugarcane varieties that have already been released to growers to plant for commercial use.
Brix	Measure of dissolved solids in sugar juice, liquor or syrup using a refractometer.
G X E trials	Genetic by Environment trials to test the interaction of the genetic attributes of varieties against environmental conditions.
Supply	The term is normally used when "supplying" seedcane referring to sugarcane field that have
Phytotoxic	Poisonous to plants.
Farmorganix/Stand Up	Brand names of new organic fertilisers being tested at SRIF.
SummaGrow	
Spectra-Cane	High-speed fully automated sugarcane analyser that uses Near- Infrared (NIR) to monitor the sugar content upon analyzing disintegrated cane. The instrument requires minimal intervention from the operator once the sample has been fed into the disintegrator at the start of the process.
%brix	Total soluble solutes in cane juice
Polarisation (or Pol)	The apparent sucrose content expressed as a mass percent measured by the optical rotation of polarized light passing through a sugar solution.
%pol	Percent total sucrose in cane juice

Fiber	The dry fibrous insoluble structure of the cane plant. Generally taken to mean all insoluble material in the cane delivered to a mill, and therefore includes soil or other extraneous insoluble matter in cane.
%fiber	Percent of fiber present in sugarcane
Purity	The true purity is the sucrose content as a percent of the dry substances or dissolved solids content. The solids consist of sugar plus non-sucrose components such as invert, ash and colorants. Apparent purity is expressed as polarization dived by refractometer Brix multiplied by 100.
POCS	Pure Obtainable Cane Sugar. A measure of total recoverable sugar in the cane. A formula based on assumption that sugarcane contains pure sugar, impurities, water and fiber only. It assumes that only pure sugar is made, and that for every kilogram of impurities which goes to the factory, half a kilogram of sugar accompanies it.
LBC	Lime Buffering Capacity. It is modified from the original method which is used for the purpose of agricultural crops. It is a potentiometric method used for determining the amount of lime required for the soil to raise the pH based on the buffering capacity of the soil. LBC is a more efficient routine determination as compared to pH buffering capacity method in regards to result throughput.
RMSECV	RMSECV: errors are calculated on test/train splits using a cross validation scheme for the splitting.
	If the splitting of the data is done correctly, this gives a good estimate on how the model built on the data set at hand performs for unknown cases. However, due to the resampling nature of the approach, it actually measures performance for unknown cases that were obtained among the calibration cases. In simple, it is a formula used to build a model from a data set, as a validation of two data set. Thus confirms data set from a new approach against the data set of the original method validating the performance of the origin of the new data set as similar to the existing method.
CQD	The body within the Fiji Sugar Industry Tribunal charged with implementing the QBPS procedures.
IMG	A group set up within each mill area, comprising representatives of the mill owner, the cane growers and the Tribunal to act as a point of contact between the CQD and the local industry.
UV-VIS spectrophotometer	Ultra violet visible light spectrum instrument. Is used to determine analyte concentrations by the absorption of light across the ultraviolet and visible light wavelengths through sugar cane juice, sugar and sugar by-products.
Nematology	The scientific study of nematode worms.
Pathology	The science of the causes and effects of diseases

FINANCIAL REPORT

Sugar Research Institute of Fiji

Financial Statements

For the year ended 31 December 2015

Sugar Research Institute of Fiji

Contents

Board report	1 - 2
Independent auditor's report	3 - 4
Statement of profit or loss and other comprehensive income	5
Statement of financial position	6
Statement of Cash Flows	7
Notes to the Financial Statements	8 - 18

Sugar Research Institute of Fiji Directors' report

Board report

In accordance with a resolution of the Board of Directors, the directors herewith submit the statement of financial position of Sugar Research Institute of Fiji (the "Institute") as at 31 December 2015 and the related statement of profit or loss and other comprehensive income and statement of cash flows for the year ended on that date and report as follows:

Directors

The Intitute did not have a Board present for the period 30 September 2012 to 4 May 2014. An interim board was appointed by the Ministry of Sugar on 4 May 2014 and the Board details were as follows:

Mr Abdul Khan (appointed on 4 May 2014) Mr Manasa Tagicakibau (appointed on 4 May 2014) Mr Sundresh Chetty (appointed on 4 May 2014)

The new Board was appointed on 1 March 2015. The Directors in office and up to the date of this report are:

Professor Rajesh Chandra - Chairman (appointed 1 March 2015)

Mr Abdul Khan (appointed on 1 March 2015)

Mr Daniel Elisha (appointed 1 March 2015)

Mr Manasa Tagicakibau (appointed on 1 March 2015 and resigned on 18 July 2017)

Professor Paras Nath (appointed 1 March 2015)

Mr Sundresh Chetty (appointed on 1 March 2015)

Dr K. Shanmudha Sundaram (appointed 1 March 2015)

Mr Graham Clark (appointed 18 July 2017)

Ms Reshmi Kumari (appointed 18 July 2017)

The Board has taken all necessary steps to have the accounts prepared properly with external input and has insured that the external auditors have unfetted access to all documents and information sought by them with the shared aim to ensure that the final accounts represent the true state of affairs of the Institute in 2015, including any liabilities.

State of affairs

In the opinion of the Board the accompanying statement of financial position gives a true and fair view of the state of affairs of the Institute as at 31 December 2015 and the accompanying statement of profit or loss and other comprehensive income and statement of cash flows give a true and fair view of the results and cash flows of the Institute for the year then ended.

Principal activity

The functions of the Institute are outlined under the Sugar Research Institute of Fiji Act No 14 of 2005, which includes promoting by means of research and investigation, the technical advancement, efficiency and productivity of the sugar industry, and to provide its functions, powers, administration and finance and for related matters.

Current assets

The directors took reasonable steps before the Institute's financial statements were made out to ascertain that the current assets of the Institute were shown in the accounting records at a value equal to or below the value that would be expected to be realised in the ordinary course of business.

At the date of this report, the directors are not aware of any circumstances which would render the values attributable to the current assets in the financial statements to be misleading.

Sugar Research Institute of Fiji Directors' report (continued)

Receivables

The directors took reasonable steps before the Institute's financial statements were made out to ascertain that all known bad debts were written off and adequate allowance was made for impairment losses.

At the date of this report, the directors are not aware of any circumstances which would render the above assessment inadequate to any substantial extent.

Related party transactions

All related party transactions have been adequately recorded in the financial statements.

Other circumstances

At the date of this report, the directors are not aware of any circumstances not otherwise dealt with in this report or financial statements which would render any amounts stated in the accounts to be misleading.

Unusual circumstances

The results of the Institute's operations during the financial year have not in the opinion of the directors been substantially affected by any item, transaction or event of a material and unusual nature other than those disclosed in the financial statements.

Going concern

The Institute's ability to continue to operate on a going concern basis is dependent on it receiving ongoing financial support from The Government, stakeholders in the Sugar Industry and other Donor Agencies. The Board Members consider the application of the going concern principle to be appropriate in the preparation of these financial statements as the Institute will continue to receive ongoing support from the Government and stakeholders in the Sugar Industry, which will enable the Institute to meet its funding requirements for operations and to meet its obligations as and when they fall due. The Institute receives funds from The Government, Fiji Sugar Corporation, and Growers through Sugar Cane Growers Council.

Accordingly, these financial statements have been prepared on a going concern basis and do not include any adjustments relating to the recoverability and classification of recorded asset amounts or to the amounts and classification of liabilities that may be necessary should the Institute be unable to continue as a going concern.

Events subsequent to balance date

There is a draft Sugar Industry Bill before the parliment that is proposing major changes in the functioning of Sugar Research Industry of Fiji and until this bill is passed, the Board cannot give assurance about the future of Sugar Research Institute of Fiji in its present form.

Apart from the above, there has not arisen in the interval between the end of the year and the date of this report any item, transaction or event of a material and unusual nature likely, in the opinion of the Directors, to affect significantly the operations of the Institute, the results of those operations or the state of affairs of the Institute in subsequent financial years.

Dated at Lautoka this Ol day of NOVEMBER 2017.

Signed in accordance with a resolution of the Board.

in Chandra

Board member

Honorable Commodore Josaia Voreqe Bainimarama Minister responsible for the Sugar Industry PO Box 2212 Government Buildings Suva

Dear Minister

INDEPENDENT AUDITOR'S REPORT TO THE BOARD MEMBERS OF SUGAR RESEARCH INSTITUTE OF FIJI

Report on the Financial Statements

We have audited the accompanying financial statements of Sugar Research Institute of Fiji, which comprise the statement of financial position as at 31 December 2015, and the statement of profit or loss and other comprehensive income, and statement of cash flows for the year then ended, and a summary of significant accounting policies and other explanatory notes as set out in notes 1 to 19.

Directors' and Management's Responsibility for the Financial Statements

Directors and management are responsible for the preparation of financial statements that give a true and fair view in accordance with International Financial Reporting Standards and for such internal control as the directors and management determine is necessary to enable the preparation of financial statements that are free from material misstatement, whether due to fraud or error.

Auditor's Responsibility

Our responsibility is to express an opinion on these financial statements based on our audit. We conducted our audit in accordance with International Standards on Auditing. Those standards require that we comply with ethical requirements and plan and perform the audit to obtain reasonable assurance about whether the financial statements are free from material misstatement.

An audit involves performing procedures to obtain audit evidence about the amounts and disclosures in the financial statements. The procedures selected depend on the auditor's judgment, including the assessment of the risks of material misstatement of the financial statements, whether due to fraud or error. In making those risk assessments, the auditor considers internal control relevant to the entity's preparation of financial statements that give a true and fair view in order to design audit procedures that are appropriate in the circumstances, but not for the purpose of expressing an opinion on the effectiveness of the entity's internal control. An audit also includes evaluating the appropriateness of accounting policies used and the reasonableness of accounting estimates made by the management, as well as evaluating the overall presentation of the financial statements.

We believe that the audit evidence we have obtained is sufficient and appropriate to provide a basis for our audit opinion.

INDEPENDENT AUDITOR'S REPORT TO THE BOARD MEMBERS OF SUGAR RESEARCH INSTITUTE OF FIJI (continued)

Basis for qualification

VAT Payable

The financial statements show an amount of VAT payable to the Fiji Government of \$541,323. The VAT status of the Institute is currently being determined with FRCA and it is not presently known what the outcome of this will be. The impact on the amount recorded in the financial statements is currently incapable of determination, and accordingly, we are not able to determine what adjustments, if any, might be necessary to the amounts recorded in the financial statements.

Expenses

The Institute recorded \$4,009,814 in total expenses in the statement of profit or loss and other comprehensive income for the year ended 31 December 2015. The Institute did not provide appropriate supporting documents totalling \$36,314 for the year ended 31 December 2015 for audit verification. As a result we were unable to determine whether any adjustments might have been necessary in respect of the Institute's total expenses for the year ended 31 December 2015, and the elements making up the statement of financial position and cash flows.

Opinion

In our opinion, except for the possible effects of the matters noted in the Basis for Qualification opinion paragraphs, the financial statements give a true and fair view of the financial position of Sugar Research Institute of Fiji as at 31 December 2015 and of its financial performance and its cash flows for the year then ended in accordance with International Financial Reporting Standards.

Report on Other Legal and Regulatory Requirements

We have obtained all the information and explanations which, to the best of our knowledge and belief, were necessary for the purposes of our audit.

In our opinion:

i) proper books of account have been kept by the Institute, so far as it appears from our examination of those books;

ii) the financial statements are in agreement with the books of account; and

iii) to the best of our information and according to the explanations given to us the financial statements give the information required by the Sugar Research Institute of Fiji Act, 2005 in the manner so required.

KPm(L

1 November, 2017 Nadi, Fiji

KPMG Chartered Accountants

Sugar Research Institute of Fiji Statement of profit or loss and other comprehensive income For the year ended 31 December 2015

	Note	2015 \$	2014 \$
Contributions and grants	6	3,743,559	2,380,353
Estate income		224,413	226,279
Other income	7	2,537	108,546
Total income		3,970,509	2,715,178
Cost of operations	8	(1,678,857)	(1,249,324)
Administrative expenses	9 (a)	(2,330,957)	(1,485,426)
Deficit from operations		(39,305)	(19,572)
Finance income		39,305	19,572
Deficit before tax		-	• -
Income tax benefit	10		<u>-</u>
Balance at the beginning of the year		-	-
Deficit for the year			

The notes on pages 8 to 18 are an integral part of these financial statements.

Sugar Research Institute of Fiji Statement of financial position For the year ended 31 December 2015

	Note	2015 \$	2014 \$
Assets		Φ	¢.
Current assets			
Cash and cash equivalents	12	4,000,895	2,674,107
Receivables and prepayments	13	157,104	2,750
Receivable from related parties	17 (b)	5,224,999	5,924,999
Total current assets		9,382,998	8,601,856
Non-current assets			
Property, plant and equipment	11	4,019,316	4,225,307
Total non-current assets		4,019,316	4,225,307
Total assets		13,402,314	12,827,163
Current liabilities			
Bank overdraft	12	-	16,836
Deferred income	14	10,448,540	10,083,526
Payable to related parties	17 (c)	2,260,537	2,254,407
Employee benefits	15	45,933	45,933
Trade and other payables	16	647,304	426,461
Total current liabilities		13,402,314	12,827,163
Total liabilities		13,402,314	12,827,163
Signed on behalf of the board			

in Chandron Chairman

Board Member

.

The notes on pages 8 to 18 are an integral part of these financial statements.

Sugar Research Institute of Fiji Statement of cash flows For the year ended 31 December 2015

	Note	2015	2014
		\$	\$
Operating Activities			
Receipts from stakeholders and donors		4,335,523	3,093,462
Payment to suppliers and employees		(3,631,442)	(2,365,975)
Interest received		39,305	19,572
Cash flows provided by Operating Activities		743,386	747,059
Investing Activities			
Acquisition of property, plant and equipment	11	(116,598)	(583,791)
Received from related parties		700,000	
Cash flows used in Investing Activities		583,402	(583,791)
Net increase in cash and cash equivalents		1,326,788	163,268
Cash and cash equivalents at the beginning of the year		2,674,107	2,510,839
Cash and cash equivalents at 31 December	12	4,000,895	2,674,107

The notes on pages 8 to 18 are an integral part of these financial statements.

1. Reporting entity

Sugar Research Institute of Fiji (the "Institute") is a body corporate domiciled in Fiji, established under the Sugar Research Institute of Fiji Act 2005. The address of the Institute's registered office is Drasa, Lautoka, Fiji.

The functions of the Institute are outlined under Sugar Research Institute of Fiji Act No 14 of 2005, which includes promoting by means of research and investigation, the technical advancement, efficiency and productivity of the sugar industry, and to provide its functions, powers, administration and finance and for related matters.

2. Basis of preparation

(a) Statement of compliance

The financial statements have been prepared in accordance with International Financial Reporting Standards (IFRS) as adopted by the International Accounting Standards Board (IASB).

The financial statements were authorised for issue by the Board of Directors on

(b) Going concern

The Institute's ability to continue to operate on a going concern basis is dependent on it receiving ongoing financial support from The Government, stakeholders in the Sugar Industry and other Donor Agencies. The Board Members consider the application of the going concern principle to be appropriate in the preparation of these financial statements as the Institute will continue to receive ongoing support from the Government and stakeholders in the Sugar Industry, which will enable the Institute to meet its funding requirements for operations and to meet its obligations as and when they fall due. The Institute receives funds from The Government, Fiji Sugar Corporation, and Growers through Sugar Cane Growers Council.

Accordingly, these financial statements have been prepared on a going concern basis and do not include any adjustments relating to the recoverability and classification of recorded asset amounts or to the amounts and classification of liabilities that may be necessary should the Institute be unable to continue as a going concern.

(c) Basis of measurement

The financial statements have been prepared on the historical cost basis except where stated.

(d) Functional and presentation currency

The financial statements are presented in Fiji dollars, rounded to the nearest dollar, which is the Institute's functional currency.

(e) Use of estimates and judgments

The preparation of financial statements in conformity with IFRS requires management to make judgments, estimates and assumptions that affect the application of accounting policies and the reported amount of assets, liabilities, income and expenses. Actual results may differ from these estimates.

Estimates and underlying assumptions are reviewed on an ongoing basis. Revisions to accounting estimates are recognised in the period in which the estimate is revised and in any future period affected.

3. Significant accounting policies

The accounting policies set out below have been applied consistently to all periods presented in these financial statement.

(a) Foreign currency transactions

Transactions in foreign currencies are translated to Fiji dollars at exchange rates at the dates of the transactions. Monetary assets and liabilities denominated in foreign currencies at the reporting date are retranslated to Fiji dollars at the exchange rate at that date. The foreign currency gains or losses on translation are recognised in profit or loss.

(b) Property, plant and equipment

Recognition and measurement

Items of property, plant and equipment are measured at cost less accumulated depreciation and impairment losses. Costs includes expenditure that is directly attributable to the acquisition of the asset. Any gain or loss on disposal of an item of property, plant and equipment are determined by comparing the proceeds from disposal with the carrying amount of property, plant and equipment, and is recognised in profit or loss.

Subsequent costs

The cost of replacing part of an item of property, plant and equipment is recognised in the carrying amount of the item if it is probable that the future economic benefit embodied within the part will flow to the Institute and its cost can be measured reliably. The cost of the day-to-day servicing of property, plant and equipment are recognised in profit or loss as incurred.

Depreciation

Depreciation is calculated to write off the costs of items of property, plant and equipment less their estimated residual values using the straight-line method over their estimated useful lives, and is recognised in profit or loss. The estimated useful lives of property, plant and equipment for current and comparative periods are as follows:

Building and land	80 years
Computers	5 years
Fixtures and fittings	10 years
Motor vehicles	6.67 years
Plant and equipment	6.67 - 10 years

Depreciation methods, useful lives and residual values are reassessed at reporting date and adjusted if appropriate.

3. Significant accounting policies (continued)

(c) Financial instruments

(i) Non-derivative financial assets

The Institute initially recognises receivables on the date that they originate. All other financial assets are recognised initially on the trade date at which the Institute becomes a party to the contractual provisions of the instrument.

The Institute derecognises a financial asset when the contractual rights to the cash flows from the asset expire, or it transfers the rights to receive the contractual cash flows on the financial asset in a transaction in which substantially all the risks and rewards of ownership of the financial asset are transferred. Any interest in transferred financial assets that is created or retained by the Institute is recognised as a separate asset or liability.

Financial assets and liabilities are offset and the net amount presented in the statement of financial position when, and only when, the Institute has a legal right to offset the amounts and intends either to settle on a net basis or to realise the asset and settle the liability simultaneously.

The Institute classifies non-derivative financial assets into loans and receivables.

Receivables

Receivables are non-derivative financial assets with fixed or determinable payments that are not quoted in an active market. Such assets are recognised initially at fair value plus any directly attributable transaction costs. Subsequent to initial recognition receivables are measured at amortised cost using the effective interest method, less any impairment losses.

Receivables comprise receivables from related party receivables, prepayments, deposits and other receivables.

Cash and cash equivalents

Cash and cash equivalents comprises cash at bank, cash on hand and bank overdraft.

(ii) Non-derivative financial liabilities

Financial liabilities are initially recognised on the trade date when the Institute becomes a party to the contractual provisions of the instrument. The institute derecognises a financial liability when its contractual obligations are discharged or cancelled or expire. Financial liabilities are initially measured at fair value less any directly attributable transaction costs. Subsequent to initial recognisition these liabilities are measured at amortised cost using the effective interest method.

The institute has the following non-derivate financial liabilities: trade and other payables and payable to related parties.

Trade and other payables and payable to related party are stated at amortised cost.

3. Significant accounting policies (continued)

(d) Inventories

Inventories are measured at the lower of cost and net realisable value. The cost of inventories is based on the first-in first-out principle, and includes expenditure incurred in acquiring the inventories, production or conversion costs and other costs incurred in bringing them to their existing location and condition.

Net realisable value is the estimated selling price in the ordinary course of business, less the estimated selling expenses.

(e) Impairment

(i) Non-derivative financial assets

A financial asset not carried at fair value through profit or loss is assessed at each reporting date to determine whether there is objective evidence that it is impaired. A financial asset is impaired if objective evidence indicates that a loss event has occurred after the initial recognition of the asset, and that the loss event had a negative effect on the estimated future cash flows of that asset that can be estimated reliably.

Objective evidence that financial assets are impaired includes default or delinquency by a debtor, restructuring of an amount due to the Institute on terms that the Institute would not consider otherwise indications that a debtor or issuer will enter bankruptcy or the disappearance of an active market for a security because of financial difficulties.

(ii) Non-financial assets

At each reporting date non financial assets are reviewed to determine whether there is any indication of impairment. If any such indication exists, then the asset's recoverable amount is estimated. If estimated recoverable amount is lower, the carrying amount is reduced to its estimated recoverable amount, and an impairment loss is recognised immediately in profit or loss.

(f) Revenue

Grant income

Grants are recognised in the statement of financial position initially as deferred income when there is reasonable assurance that it will be received and that the Institute will comply with the conditions associated with the grant. It is then recognised in the profit or loss as grant income on a systematic basis as the Institute recognises expenses by achieving the relevant conditions of the grant.

Grants that relate to the acquisition of an asset are recognised in profit or loss as the asset is depreciated or amortised. The Institute chooses to present grant income on a gross method that is, recognising entire grant income and than offsetting against expenses.

(g) Employee benefits

Superannuation

Obligations for contributions to a defined contribution plan are recognised as an expense in profit or loss when they are due.

3. Significant accounting policies (continued)

(g) Employee benefits (continued)

Employee entitlements

Liability for annual leave is recognised and measured as the amount unpaid at the reporting date at current pay rates in respect of employee services up to that date.

Short-term benefits

Short-term employee benefit obligations are measured on an undiscounted basis and are expensed in the profit or loss as the related service is provided.

A liability is recognised for the amount to be paid under short-term benefit if the Institute has a present or constructive obligation to pay this amount as a result of past services provided by the employee and the obligation can be measured reliably.

(h) Income tax

The Institute is not subject to income tax.

(i) Receivable from related parties

The amounts receivable from related parties are recognised when there is a contractual receivable or a right to receive.

4. Financial risk management

The financial statements do not disclose information relating to the nature and extent of risks arising from financial instuments to which the Institute is exposed at year end, since credit risk, liquidity risk and market fluctuatuions are not material to the Institute.

5. Standards Issued but not yet adopted

A number of new standards, amendments to standards and interpretations are effective for annual periods beginning after 1 January 2014, and have not been applied in prepaing these financial statements. None of these are expected to have a significant effect on the financial statements of the Company.

6. Contributions and grants

Contributions from stakeholders and grants that compensate the Institute for revenue and capital expenditure are recognised from deferred income as follows:

	2015	2014
	\$	\$
African Caribbean and Pacific Group of States (ACP)	-	-
Contribution from the Fiji Government	782,609	815,135
European Union	450,622	-
Fiji Sugar Corporation (FSC)	782,609	782,609
Sugar Cane Growers	782,609	782,609
	2,798,449	2,380,353
7. Other income		
Sundry income	2,537	108,546
	2,537	108,546
8. Cost of operations		
Advertising	3,176	4,105
Bank charges	2,764	5,928
Consultancy fees	41,209	-
Depreciation	307,033	339,681
Electricity	39,236	40,649
EU Cost	183,630	130,774
Communication expenses	20,910	15,861
Material costs	43,728	90,776
Motor vehicle running expenses	203,253	271,605
RAF costs	-	2,196
Repair and maintenance	13,953	14,376
Subcontract expenses	198,995	298,224
Travel	183,728	35,149
Wages and salaries (refer note 9 (b))	437,242	391,189
	1,678,857	1,640,513

For the year ended 31 December 2015		
	2015	2014
9 (a) Administrative expenses	\$	\$
Auditors remuneration - audit	1,241	4,423
- other services	8,202	7,000
Accomodation and meals	56,694	24,783
ACP cost	173,260	49,709
Bad debts	-	12,992
CEO security	444	-
Doubtful debts expense	782,609	_
Electricity	12,556	9,208
Fiji National Provident Fund contributions	171,222	77,204
General expenses	115,443	95,941
Hire of services	88,897	88,972
	-	
ICT consumables	13,064	15,477
ICT license	- 47 190	2,283
Insurance	47,180	14,251
Inventory write off	2 250	1,311
Legal fees	3,250	1,250
Medical expense	548	2,149
Media and publications	2,392	2,255
Freight	50,005	31,873
Postage	2,339	978
Rent	5,987	40,991
Repair and maintenance	24,252	1,838
Stationery	25,039	5,233
Staff expenses	6,099	-
Training	5,818	3,915
Training and Productivity Authority of Fiji	9,650	9,074
Travel	34,951	427
Tuition fees	13,441	-
OHS	7,965	-
Uniforms	11,738	-
Visa permit	-	2,608
Water	808	1,309
Wages and salaries (refer note 9 (b))	655,863	586,783
	2,330,957	1,094,237
		1,091,237
(b) Personnel expenses		
Fiji National Provident Fund contributions	95,123	77,204
Training and Productivity Authority of Fiji	9,650	9,074
Key management compensation - short term benefits	87,432	124,427
Wages and salaries	1,081,772	853,545
Other staff related costs	17,837	-
	1,291,814	1,064,250

10. Income tax

In 2012 the Fiji Revenue and Customs Authority confirmed that the entity is not subject to income tax.

11. Property, plant and equipment

	Land & Building	Fixtures & fittings	Plant & equipment	Motor vehicles	Computers	Work in progress	Total
	\$	\$	\$	\$	\$	\$	\$
Cost							
Balance at 1 January 2014	2,490,147	43,932	1,504,667	1,138,474	254,522	178,226	5,609,968
Acquisitions	140,759	-	320,674	65,435	56,923	-	583,791
Transferred during the year	178,226	-	-	-	-	(178,226)	-
Balance as at 31 December 2014	2,809,132	43,932	1,825,341	1,203,909	311,445	-	6,193,759
Acquisitions	-	-	74,646	-	19,230	22,722	116,598
Transferred during the year	-	-	(15,556)	-	-	-	(15,556)
Balance as at 31 December 2014	2,809,132	43,932	1,884,431	1,203,909	330,675	22,722	6,294,801
Depreciation							-
Balance at 1 January 2014	73,083	19,375	436,396	870,755	229,162	-	1,628,771
Depreciation charge	28,707	4,393	160,830	124,138	21,613	-	339,681
Balance at 31 December 2014	101,790	23,768	597,226	994,893	250,775	-	1,968,452
Depreciation charge	31,365	4,393	181,588	74,489	15,198		307,033
Balance at 31 December 2014	133,155	28,161	778,814	1,069,382	265,973		2,275,484
Carrying amount							
At 1 January 2014	2,417,064	24,557	1,068,271	267,719	25,360	178,226	3,981,197
At 31 December 2014	2,707,342	20,164	1,228,115	209,016	60,670	-	4,225,307
At 31 December 2015	2,675,977	15,771	1,105,617	134,527	64,702	22,722	4,019,316

	2015	2014
	\$	\$
12. Cash and cash equivalents		
Cash at bank	4,000,885	2,674,097
Cash on hand	10	10
Cash and cash equivalents in the statement of financial position	4,000,895	2,674,107
Bank overdraft	-	(16,836)
Cash and cash equivalents in the statement of cash flows	4,000,895	2,657,271
13. Receivables and prepayments		
Staff loan	20,658	-
Prepayments	133,696	-
Deposits	2,750	2,750
	157,104	2,750

14. Deferred income

The Institute's Deferred income comprises of the receipt of grant income from stakeholders, European Union, African Carribbean and Pacific Group of States, Mauritius Sugar Research Institute and Fiji Sugar Tribunal. Each grant received has its specific conditions that the Institute needs to comply with. The movement in Deferred income is as follows:

	2015	2014
	\$	\$
Balance at the beginning of the year	10,083,526	7,840,186
Funds received or receivable during the period	4,366,973	4,978,090
Utilised during the period	(4,001,959)	(2,734,750)
Balance at 31 December	10,448,540	10,083,526
This is comprised as follows:	······································	
Contribution from stakeholders	4,598,172	4,174,540
European Union grant	4,425,346	4,943,375
African Caribbean and Pacific Group of States (ACP)	1,162,670	873,006
Mauritius Sugar Research Instititue (MISRI)	81,095	125,130
Fiji Sugar Tribunal	181,257	-
	10,448,540	10,116,051
15. Employee benefits		
Balance at 1 January	45,933	45,933
Provision during the year	-	-
Provision utilised during the year	-	· -
Balance at 31 December	45,933	45,933

16. Trade and other payables

F)	2015	2014
	\$	\$
Trade payables	51,806	78,480
Other payables	54,175	66,908
VAT payable	541,323	281,073
	647,304	426,461

17. Related parties

Related parties of the Institute include key stakeholders in the Fiji Sugar Industry, namely, the Government of Fiji, Fiji Sugar Corporation, South Pacific Fertilizers Limited, Sugar Cane Growers.

Transactions with these parties and outstanding balances at year end are disclosed below.

(a) Board members

The Intitute did not have a Board present for the period 30 September 2012 to 4 May 2014. An interim board was appointed by the Ministry of Sugar on 4 May 2014 and the Board details were as follows:

Mr Abdul Khan (appointed on 4 May 2014)

Mr Manasa Tagicakibau (appointed on 4 May 2014)

Mr Sundresh Chetty (appointed on 4 May 2014)

The new Board was appointed on 1 March 2015. The Directors in office and up to the date of this report are:

Professor Rajesh Chandra - Chairman (appointed 1 March 2015)

Mr Abdul Khan (appointed on 1 March 2015)

Mr Daniel Elisha (appointed 1 March 2015)

Mr Manasa Tagicakibau (appointed on 1 March 2015 and resigned on 18 July 2017)

Professor Paras Nath (appointed 1 March 2015)

Mr Sundresh Chetty (appointed on 1 March 2015)

Dr K. Shanmudha Sundaram (appointed 1 March 2015)

Mr Graham Clark (appointed 18 July 2017)

Ms Reshmi Kumari (appointed 18 July 2017)

2015	2014
\$	\$
3,424,999	4,124,999
2,700,000	1,800,000
(900,000)	-
5,224,999	5,924,999
-	-
900,000	-
900,000	-
	\$ 3,424,999 2,700,000 (900,000) 5,224,999

Receivables from related parties are interest free and receivable as and when required.

17. Related parties (continued)

	2015	2014
	\$	\$
(c) Amounts payable to related parties		
Fiji Sugar Corporation	2,260,537	2,254,407
	2,260,537	2,254,407
Payable to related parties are interest free and payable on demand.		
(d) Transactions with related parties		
Revenue		
Grant income - Fiji Sugar Corporation	782,609	782,609
Grant income - Fiji Government	782,609	815,135
Grant income - Sugar Cane Growers	782,609	782,609
Estate income - Fiji Sugar Corporation	224,412	226,279
	2,572,239	2,606,632
Impairment loss		
Sugar Cane Growers	782,609	-

2014

2015

(e) Key management personnel

Key management personnel include the chief executive officer and finance and administration manager of the Institute.

Transactions with key management personnel are no favourable than those available, or which might be reasonably be expected to be available, on similar transactions to third parties on an arm's length.

Key management personnel compensation is comprised as below:

	2015	2014
	\$	\$
Short-term employee benefits	87,432	124,427

18. Capital commitments and contingencies

Capital commitments and contingent liabilities as at 31 December 2015 amounted to \$Nil (2014: \$Nil).

19. Events subsequent to balance date

There is a draft Sugar Industry Bill before the parliment that is proposing major changes in the functioning of Sugar Research Industry of Fiji and until this bill is passed, the Board cannot give assurance about the future of Sugar Research Institute of Fiji in its present form.

Apart from the above, there has not arisen in the interval between the end of the year and the date of this report any item, transaction or event of a material and unusual nature likely, in the opinion of the Directors, to affect significantly the operations of the Institute, the results of those operations or the state of affairs of the Institute in subsequent financial years.

DRONE VIEW OF SRIF HQ & DRASA SECTOR FARMS

and the states

15. 10

17、并注意

I STAT

1 1000

© Sugar Research Institute of Fiji, 2015. P. O. Box 3560, Lautoka. PH.: +679 8921839 PH.: +679 8921840 Email: info@srif.org.fj Website: www.srif.net.fj Rarawai (Ba) Office: +679 8907343. Wairuku (Rakiraki) Office: +679 8907344. Batinikama (Labasa) Office: +679 8907345.

